TMS320C6000 Architectural
Overview




LLearning Objectives

¢ Describe C6000 CPU architecture.
¢ Introduce some basic instructions.
¢ Describe the C6000 memory map.
¢ Provide an overview of the peripherals.
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C6000 Functional Units
| N D \Y |

Integer Adder Integer Adder Integer Adder Integer
Multiplier

Logical Logical Load-Store
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Constant
Branch/Control
Paired Short Math

C67x Additions
L S D \Y|
FP Adder FP Compare Load Double FP Multiplier
FP Conversion FP Conversion
FP Reciprocal
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TMS320C6712

600 MFLOPS/100 MHz at

External Level 1 $9.95 in Volume

Memory Program
Interface Cache

4K Bytes Code compatibility with all
C6000 devices

Enhanced DMA

C(EDMﬁ) Dual-level cache memory
ontroller Levlslle fn (c::;:he/ 'C67x Core architecture (same as

64K Bytes C6211/C6711) enables
systems savings

. 2 Multi-Channel
Serial Ports Enhanced DMA (EDMA) is

L 11 O . - .
: Data optimized for efficiency in
- Cache small RAM devices

4K Bytes

TMS320C6712 Digital Signal Processor .
256-pin BGA (same

package as C6711)
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Instruction Fetch Control
Registers

Advanced
Emulation

Instruction Decode
Data Path 2

B31-B16
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Cache Data Flow

CPU requests
data

Move Data from

. n H L]
Is data in L17% Is data in L27 External to L2

Send Data Move Data
to CPU from L2 to L1
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L2: Direct On-Chip I/0O Typical
Cache Architecture

= Lacks non-cacheable regions

= Requires external storage
of peripheral data

External
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C6211/C6711/C6712 L.2:
Direct On-Chip I/0 C6712

= Configurable L2 allows real-time processing

External Mapped

External Memory
Memory Interface

Peripheral
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Implementation of Sum of Products (SOP)

It has been shown in
Chapter 1 that SOP is the
key element for most DSP
algorithms.

So let’s write the code for
this algorithm and at the
same time discover the
C6000 architecture.

N
- Z an*Xn
I |

=a, *X,+a,* X, +... + ay ¥ Xy
Two basic
operations are required
for this algorithm.
(1) Multiplication
(2)
Therefore two basic

instructions are required
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Implementation of Sum of Products (SOP)

So let’s implement the SOP
algorithm!

The implementation in this
module will be done in
assembly.

N
Y = 2 a*x

n=1
=a, ¥*xX, +a,* X, +...

Two basic
operations are required
for this algorithm.
(1) Multiplication

(2)
Therefore two basic

instructions are required
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Multiply (MPY)

N
Y = 2 a*x

n=1

—q * 2 =
=a, *X;+a, %X, +... + ay ¥ xy

The multiplication of a, by x, 1s done in
assembly by the following instruction:

MPY al, x1, Y

This instruction is performed by a
multiplier unit that is called “.M”’
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Multiply (.M unit)

The . M unit performs multiplications in
hardware

MPY .M al, x1, Y

Note: 16-bit by 16-bit multiplier provides a 32-bit result.
32-bit by 32-bit multiplier provides a 64-bit result.
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Addition (.?

MPY M al, x1, prod
ADD .? Y, prod, Y
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Add (.L unit)

MPY M al, x1, prod
ADD L Y, prod, Y

RISC processors such as the C6000 use registers to
hold the operands, so lets change this code.
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Register File - A

Register File A

al
x1

MPY M al, x1, prod
ADD L Y, prod, Y

<<
-

32-bits

Let us correct this by replacing a, x, prod and Y by the
registers as shown above.
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Speciiying Register Names

40
Register File A
Y = 2 a*x
al S
x1

MPY M  A0,Al A3
ADD L Ad, A3, Ad

<<
-

32-bits

The registers A0, A1, A3 and A4 contain the values to
be used by the instructions.
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Speciiying Register Names

40
Register File A
Y = 2 a*x
al S
x1

MPY M  A0,Al A3
ADD L Ad, A3, Ad

<<
-

32-bits

Register File A contains 16 registers (A0 -A15) which
are 32-bits wide.
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Data loading

Register File A

al

x1

Q: How do we load the
operands into the registers?
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L.oad Unit **.D”

Register File A Q: How do we load the
al operands into the registers?

x1

A: The operands are loaded
into the registers by loading
them from the memory
using the .D unit.

Data Memory
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L.oad Unit **.D”

Register File A

It is worth noting at this

al stage that the only way to

x1 access memory is through the
.D unit.

Data Memory
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L.oad Instruction

Register File A Q: Which instruction(s) can be
al used for loading operands
x1 from the memory to the

registers?

Data Memory
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Load Instructions (LDB, LDH,LDW,LDDW)

Register File A Q: Which instruction(s) can be
al used for loading operands
x1 from the memory to the

registers?

prod : . ;
Y A: The load instructions.

Data Memory
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Using the Load Instructions

Before using the load unit you Data address

have to be aware that this 00000000
processor is byte addressable,
which means that each byte is 00000002

represented by a unique 00000004
address. 00000006
Also the addresses are 32-bit 00000008

—

FFFFFFFF
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Using the Load Instructions

The syntax for the load Data address

instruction 1s: al 00000000

x1 00000002
00000004
prod 00000006

)% 00000008

LD *Rn,Rm

Where:

Rn is a register that contains
the address of the operand to

be loaded $

and

Rm is the destination register. FFFFFFFF
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Using the Load Instructions

The syntax for the load Data address

instruction 1s: al 00000000

x1 00000002
00000004

The question now is how many prod 00000006
bytes are going to be loaded Y 00000008

into the destination register? w

LD *Rn,Rm

FFFFFFFF
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Using the Load Instructions

The syntax for the load Data address

instruction 1s: al 00000000

x1 00000002
00000004
The answer, is that it depends 00000006
on the instruction you choose: Y 00000008
LDB: loads one byte (8-bit)
LDH: loads half word (16-bit) $
LDW: loads a word (32-bit)
LDDW: loads a double word (64-bit)

LD *Rn,Rm

FFFFFFFF

Note: LD on its own does not
exist.
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Using the Load Instructions

The syntax for the load 1 Data 0 address

instruction 1s: 0xA 00000000

0xC 00000002
0x2 00000004
Example: 0x4 00000006

If we assume that A5 = 0x4 then: 0x6 00000008
(1) LDB *A5, A7 ; gives A7 = 0x00000001 0x8 /037\

(2) LDH *A5,A7; gives A7 = 0x00000201 w

(3) LDW *AS5,A7; gives A7 = 0x04030201

(4) LDDW *AS5,A7:A6; gives A7:A6 =
0x0807060504030201

LD *Rn,Rm

FFFFFFFF
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Using the Load Instructions

The syntax for the load Data address
Instruction 1s: OxA 00000000

0xC 00000002
0x2 00000004
0x4 00000006

0x6 00000008
If data can only be accessed by the o T
load instruction and the .D unit, SN

how can we load the register w
pointer Rn in the first place?

LD *Rn,Rm

Question:

FFFFFFFF
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Loading the Pointer Rn

¢ The instruction MVKL will allow a
move of a 16-bit constant into a register
as shown below:

MVKL .? a, AS

(‘a’ is a constant or label)

How many bits represent a full address?
32 bits

So why does the instruction not allow a
32-bit move?

All instructions are 32-bit wide (see
instruction opcode).
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Loading the Pointer Rn

¢ To solve this problem another instruction
is available:

MVKH

ah

egc. MVKH o a, AS

(‘a’ is a constant or label)

ah

¢ Finally, to move the 32-bit address to a
register we can use:

MVKL a, A5
MVKH W
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Loading the Pointer Rn

¢ Always use MVKL then MVKH, look at
the following examples:

Example 1
AS = 0x87654321

MVKL 0x1234FABC, AS 0x1234FABC, AS
AS = OxFFFFFABC (sign extension)

Example 2

MVKH 0x1234FABC, AS 0x1234FABC, A5
AS = 0x12344321
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LDH, MVKL and MVKH

Register File A

a
X

ptl, AS
ptl, AS

pt2, A6
pt2, A6

*A5, A0
*A6, Al
A0, A1, A3
Ad, A3, Ad

Data Memory
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Creating a loop

So far we have only
implemented the SOP ptl, AS
for one tap only, i.e. ptl, AS
pt2, A6
pt2, A6

_— ¥
Y=a,; *x, A5, AO

*A6, Al
A0, A1, A3

So let’s create a loop
A4, A3, Ad

so that we can
implement the SOP

for N Taps.
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Creating a loop

So far we have only
implemented the SOP
for one tap only, i.e.

With the C6000 processors

V= q. * there are no dedicated
=a; " Xy instructions such as block

repeat. The loop is created
using the B instruction.

So let’s create a loop
so that we can
implement the SOP
for N Taps.
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What are the steps for creating a loop

. Create a label to branch to.

. Add a branch instruction, B.

. Create a loop counter.

. Add an instruction to decrement the loop counter.

. Make the branch conditional based on the value in

the loop counter.
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1. Create a label to branch to

MVKL ptl, A5
MVKH ptl, A5

MVKL pt2, A6
MVKH pt2, A6

*A5, A0
*A6, Al

A0, A1, A3
Ad, A3, Ad
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2. Add a branch instruction, B.

MVKL ptl, A5
MVKH ptl, A5

MVKL pt2, A6
MVKH pt2, A6

*AS, A0
*A6, Al
A0, Al, A3
Ad, A3, A4
loop
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Which unit is used by the B instruction?

d

X

Register File A

G

MVKL
MVKH

MVKL
MVKH

ptl, AS
ptl, AS

pt2, A6
pt2, A6

*AS, A0
*A6, Al
A0, Al, A3
Ad, A3, A4
loop

Data Memory
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Which unit is used by the B instruction?

d

X

Register File A

G

MVKL .
MVKH .

MVKL .
MVKH .

ptl, AS
ptl, AS

pt2, A6
pt2, A6

*AS, A0
*A6, Al
A0, Al, A3
Ad, A3, A4
loop

Data Memory
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3. Create a loop counter.

MVKL .S ptl, A5
MVKH .S ptl, A5

— | MVKL . pt2, A6
X MVKH .S pt2, A6
MVKL . count, B0

Register File A

d

LDH . *AS, A0
LDH . *A6, Al

\Y 1 0 ‘G A0, Al, A3
ADD . Ad, A3, A4
B . loop

B registers will be introduced later

Data Memory
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4. Decrement the loop counter

MVKL .S ptl, A5
MVKH .S ptl, A5

— | MVKL . pt2, A6
X MVKH .S pt2, A6
MVKL . count, B0

Register File A

d

LDH . *AS, A0
LDH . *A6, Al

\Y 1 0 ‘G A0, Al, A3
ADD . Ad, A3, A4
SUB . B0, 1, B0
B . loop

Data Memory
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5. Make the branch conditional based on the
value in the loop counter

¢ What is the syntax for making instruction
conditional?

[condition] Instruction Label

e.g.
[B1] B loop

(1) The condition can be one of the following
registers: A1, A2, Bo, B1, B2.

(2) Any instruction can be conditional.
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5. Make the branch conditional based on the
value in the loop counter

¢ The condition can be inverted by adding the
exclamation symbol *“!”’ as follows:

[!condition] Instruction Label
e.g.

[!BO] B loop ;branch if BO =0

[BO] B loop ;branch if B0 !=0
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5. Make the branch conditional

d

X

Register File A

G

MVKL .
MVKH .

MVKL .
MVKH .
MVKL .

LDH
LDH
MPY
ADD
SUB
B

ptl, AS
ptl, AS

pt2, A6
pt2, A6
count, B0

*AS, A0
*A6, Al
A0, Al, A3
Ad, A3, A4
B0, 1, B0
loop

Data Memory
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More on the Branch Instruction (1)

€ With this processor all the instructions are
encoded in a 32-bit.

@ Therefore the label must have a dynamic range
of less than 32-bit as the instruction B has to be
coded.

32-bit

<

B 21-bit relative address

® Casel: B .S1 label
® Relative branch.
® Label limited to +/- 220 offset.
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More on the Branch Instruction (2)

& By specifying a register as an operand instead
of a label, it is possible to have an absolute
branch.

This will allow a dynamic range of 2°2.

32-bit

>

5-bit register
B code

Case 2: B .S2 register
€ Absolute branch.
€ Operates on .S2 ONLY!
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Testing the code

MVKL .S2 ptl, A5
MVKH .S2 ptl, A5

MVKL .S2 pt2, A6
MVKH .S2 pt2, A6

This code performs the following MVKL . count, B0

operations:

LDH .D *AS5,A0
LDH .D *A6,Al
MPY M A0,Al,A3

However, we would like to perform: ADD . A4, A3, Ad
a,%X, +a, %X, + 8,%X, + ... + ay¥Fxy SUB . B0, 1, BO

b8 & * &

B . loop
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Modifying the pointers

MVKL .S2 ptl, A5
MVKH .S2 ptl, A5

MVKL . pt2, A6
MVKH . pt2, A6
MVKL . count, B0

The solution is to modify the pointers LLDH . *AS, AQ

LDH . *A6, Al

\Y 1 0 ‘G A0, Al, A3
ADD . Ad, A3, A4
SUB . B0, 1, B0
B . loop

AS and A6.
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Indexing Pointers

Pointer
Modified

Pointer No

Description

In this case the pointers are used but not modified.

R can be any register
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Indexing Pointers

Pointer
Modified

*R Pointer No
*+R[disp] + Pre-offset No
*—R[disp] - Pre-offset No

Syntax Description

In this case the pointers are modified BEFORE being used
and RESTORED to their previous values.

+ [disp] specifies the number of elements size in DW (64-bit), W
(32-bit), H (16-bit), or B (8-bit).

+ disp = R or 5-bit constant.

+ R can be any register.
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Indexing Pointers

Pointer
Modified

*R Pointer No

*+R [disp] + Pre-offset No

*—R[disp] - Pre-offset No
*++R [disp] Pre-increment
*——R[disp] Pre-decrement

Syntax Description

In this case the pointers are modified BEFORE being used
and NOT RESTORED to their Previous Values.
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Indexing Pointers

Pointer
Modified

*R Pointer No

*+R [disp] + Pre-offset No
*—R [disp] - Pre-offset No
*++R[disp] Pre-increment Yes
*——R[disp] Pre-decrement Yes
*R++ [disp] Post-increment Yes
*R——[disp] Post-decrement Yes

Syntax Description

In this case the pointers are modified AFTER being used
and NOT RESTORED to their Previous Values.
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Indexing Pointers

Pointer
Modified

*R Pointer No
*+R[disp] + Pre-offset No
*—R[disp] - Pre-offset No

*++R[disp] Pre-increment Yes
*——R[disp] Pre-decrement Yes
*R++ [disp] Post-increment Yes
*R——[disp] Post-decrement Yes

Syntax Description

+ [disp] specifies # elements - size in DW, W, H, or B.
+ disp = R or 5-bit constant.
+ R can be any register.
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Modifty and testing the code

MVKL .S2 ptl, A5
MVKH .S2 ptl, A5

MVKL . pt2, A6
MVKH . pt2, A6
MVKL . count, B0

This code now performs the following LLDH . *AS++, A0
operations: 19)): *A6++, Al

a,*x, +a,*x; + a,*x, +... +ay*xy MPY A0. Al. A3

O 9 9
ADD . Ad, A3, Ad
SUB . B0, 1, B0
B . loop
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Store the final result

MVKL .S2 ptl, A5
MVKH .S2 ptl, A5

MVKL . pt2, A6
MVKH . pt2, A6
MVKL . count, B0

This code now performs the following LLDH . *AS++, A0

operations: LDH . *A6++, Al

b8 & & *

\Y 1 0 ‘G A0, Al, A3
ADD . Ad, A3, A4
SUB . B0, 1, B0
B . loop

STH . A4, *A7

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002




Store the final result

MVKL .S2 ptl, A5
MVKH .S2 ptl, A5

MVKL . pt2, A6
MVKH . pt2, A6
MVKL . count, B0

LDH . *AS++, A0
LDH . *A6++, Al
1\Y | ) " A0, Al, A3
ADD . Ad, A3, A4
SUB . B0, 1, BO
B . loop

STH . Ad, *A7

The Pointer A7 has not been initialised.
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Store the final result

MVKL .S2 ptl, A5
MVKH .S2 ptl, A5

MVKL .S2 pt2, A6
MVKH .S2 pt2, A6

MVKL . pt3, A7
MVKH . pt3, A7
MVKL . count, B0

The Pointer A7 is now initialised.
LDH . *AS5++, AO
LDH . *A6++, Al
MPY . A0, Al, A3
ADD . A4, A3, A4
SUB : B0, 1, B0

[BO] B . loop
STH . Ad, *A7
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What is the initial value of A4?

MVKL .S2 ptl, AS
MVKH .S2 ptl, AS

MVKL .S2 pt2, A6
MVKH .S2 pt2, A6

MVKL . pt3, A7
MVKH . pt3, A7
A4 is used as an accumulator, MVKL . count, B0

so it needs to be reset to zero. ZERO . A4
LDH . *AS++, A0

LDH . *A6++, Al

MPY . A0, Al, A3

ADD . A4, A3, A4

SUB . B0, 1, B0
[BO] B . loop

STH . Ad, *A7
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Increasing the processing power!

Register File A

S1

How can we add
more processing
power to this

M1

processor?

L1

D1

|

Data Memory
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Increasing the processing power!

Register File A

St (1) Increase the clock

frequency.

M1

(2) Increase the number
of Processing units.

L1

D1

|

Data Memory
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To increase the Processing Power, this processor has two
sides (A and B or 1 and 2)

Register File A Register File B

S1 S2

M1 M2

L1 L2

D1 D2

|

Data Memory
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Can the two sides exchange operands in order to increase
performance?

Register File A Register File B

S1 S2

M1 M2

L1 L2

D1 D2

|

Data Memory
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The answer is YES but there are limitations.

¢ To exchange operands between the two
sides, some cross paths or links are
required.

What is a cross path?

¢ A cross path links one side of the CPU to
the other.

¢ There are two types of cross paths:
¢ Data cross paths.
¢ Address cross paths.
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Data Cross Paths

Data cross paths can also be referred to
as register file cross paths.

These cross paths allow operands from
one side to be used by the other side.

There are only two cross paths:

¢ one path which conveys data from side B
to side A, 1X.

¢ one path which conveys data from side A
to side B, 2X.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002




TMS320C67x Data-Path

LD1 32 MSB
ST1 4

Register
filee A
(AD-A15)

LD1 32 LSE

Ot
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Data Cross Paths

¢ Data cross paths only apply to the .L, .S
and .M units.

¢ The data cross paths are very useful,
however there are some limitations in
their use.
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Data Cross Path Limitations

A

D'VX

(1) The destination register must be 1x
on same side as unit.

(2) Source registers - up to one cross
path per execute packet per side. B

Execute packet: group of instructions that
execute simultaneously.
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Data Cross Path Limitations

A

L1 —

.M1
.S1 I | \[2X

ADD .Lix AO0,A1,B2
MPY .Mix A0,B6,A9 1x
SUB .Six A8,B2,AS8
ADD .Lix AO0,B0,A2 B

Means that the SUB and ADD
belong to the same fetch packet,
therefore execute
simultaneously.
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Data Cross Path Limitations

A

L1 —

M1
.S1 I | \[2X

eg:
ADD .Lix A0,A1,B2
MPY .Mix A0,B6,A9 1x

B
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Data Cross Paths for both sides

A

{| 2X

<Src>
(J Sz =

<Src>
1.2 _ﬂ
M2 — B
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Address cross paths

- Data

A

- Addr

D1

(1) The pointer must be on the same
side of the unit.

LDW.D1T1 *A0,AS5
STW.D1T1 A5, *A0
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L.oad or store to either side

Datal A5

>

A

DA1=T1

D1

DA2=T2

LDW.D1T1 *AQ,AS5
LDW.D1T2 *AQ,B5 B

) Data?2 B5

>
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Standard Parallel L.oads

AS

>

A

D2

B

LDW.D1T1 *A0,A5
| | LDW.D2T2 *BO,B5
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Parallel Load/Store using address cross paths

. Datal AS

A

D1

D2

B

LDW.D1T2 *A0,B5
|| STW.D2T1 A5, *BO

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002




Fill the blanks ... Does this work?

) Datal

A

DA1=T1

DA2 =T2

D2

B

LDW.D1___ *A0, B5
|| STW.D2___ B6, *B0O
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Not Allowed!

DA2 = T;

D2

B

B5
LDW.D1T2 *A0,B5 7

B
| | STW.D2T2 B6, *BO 6
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Not Allowed!
Parallel accesses: both cross or neither cross

) Datal

A

D1

DA2 = T;

D2

B

B5
LDW.D1T2 *A0,B5 7

B
| | STW.D2T2 B6, *BO 6
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Conditions Don’t Use Cross Paths

¢ If a conditional register comes from the
opposite side, it does NOT use a
data or address cross-path.

¢ Examples:

[B2] ADD .L1 A2,A0,6 A4
[A1l] LDW .D2 *BO,B5
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‘C62x Data-Path Summary

P
Ref Guide

asf
long dst 8 :
long src

Full CPU Datapath
(Pg2-2)

long src
fong dst Register
st file A

51 srci {AD-A15)
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‘C67x Data-Path Summary

sret

.L1 E"CZ'_@_'

dst
long dsf
long sre

LD1 32 MSB
ST1 4

long src Reqgister
long dst file A
dst (AD-A15)
51

srcl
sres

st
srcl

sre2

LD1 32 LSE

st
srcl
srce

Ot
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Cross Paths - Summary

v, Data

+ Destination register on same side as unit.

+ Source registers - up to one cross path per
execute packet per side.

+ Use “x”’ to indicate cross-path.

v/ Address

+ Pointer must be on same side as unit.
+ Data can be transferred to/from either side.
» Parallel accesses: both cross or neither cross.

v/ Conditionals Don’t Use Cross Paths.
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Code Review (using side A only)

40
Y = 2 a *x
I |

MVK .S1 40, A2 s A2 = 40, loop count
LDH .D1I *A5++,A0 ;AO0=a(n)

LDH .D1I *A6++,Al1 ;Al=x(n)

MPY M1 AO0,A1,A3 ;A3=a(n) *x(n)

ADD ILL1 A3,A4,A4 ;Y=Y+A3

SUB L1 A2,1, A2 ; decrement loop count
B S1 loop ; iIf A2 # 0, branch
STH .D1 A4, *A7 s FAT=Y

Note: Assume that A4 was previously cleared and the pointers are initialised.
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Let us have a look at the final details
concerning the functional units.

Consider first the case of the .LL and .S
units.
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Operands - 32/40-bit Register, S-bit Constant

¢ Operands can be:
+ 5-bit constants (or 16-bit for MVKL and MVKH).
+ 32-bit registers.
+ 40-bit Registers.

¢ However, we have seen that registers are only
32-bit.

So where do the 40-bit registers come from?
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Operands - 32/40-bit Register, S-bit Constant

¢ A 40-bit register can be obtained by
concatenating two registers.

¢ However, there are 3 conditions that need
to be respected:

+ The registers must be from the same side.

+ The first register must be even and the second
odd.

+ The registers must be consecutive.
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Operands - 32/40-bit Register, S-bit Constant

¢ All combinations of 40-bit registers are
shown below:

40-bit Reg 40-bit Reg
«| even «| even
RY S RY

:AQ B1l:BO
:A2 B3:B2
:A4d BS5 : B4
:A6 B7:B6
:A8 B9:B8
B11:B10
B13:B1l2
B15:B14
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Operands - 32/40-bit Register, S-bit Constant

instr .unit <src>, <src>, <dst>

32-bit S-bit 32-bit 40-bit
Reg Const Reg Reg

1< SIC > < Src >1

< wws )

l<d8t>

40-bit
Reg
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Operands - 32/40-bit Register, S-bit Constant

instr .unit <src>, <src>, <dst>

5-bit 32-bit 40-bit
Reg Const Reg Reg

1< SIC > < Src >l

N T 4

l<dst>

40-bit
Reg
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Operands - 32/40-bit Register, S-bit Constant

instr .unit <src>, <src>, <dst>

Reg

5-bit 32-bit
Const Reg

40-bit
Reg

1< SIC >

N

< SIcC >l

L or.S

/OR.Ll A0, Al, A2

l<dst>

40-bit
Reg
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Operands - 32/40-bit Register, S-bit Constant

instr .unit <src>, <src>, <dst>

Reg

S-bit 32-bit
Const Reg

40-bit
Reg

1< SIC >

N

< SIcC >l

L or.S

/OR.Ll A0, Al, A2

l<dst>

40-bit
Reg

ADD.L2 -5, B3, B4
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Operands - 32/40-bit Register, S-bit Constant

instr .unit <src>, <src>, <dst>

Reg

5-bit 32-bit
Const Reg

40-bit
Reg

1< SIC >

N

< SIcC >l

L or.S

/OR.Ll A0, Al, A2

l<dst>

40-bit
Reg

ADD.L2 -5, B3, B4
ADD.L1 A2, A3, A5:A4
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Operands - 32/40-bit Register, S-bit Constant

instr

.unit

<src>,

<src>, <dst>

Reg

5-bit
Const

32-bit
Reg

40-bit
Reg

1< SIC >

N

< SIcC >l

L or.S

/OR.Ll

l<dst>

40-bit
Reg

ADD. L2
ADD.L1

SUB.L1

Al, A2
B3, B4

A3, A5:A4
A5:A4, AS5:A4

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002




Operands - 32/40-bit Register, S-bit Constant

instr .unit <src>, <src>, <dst>

S-bit 32-bit 40-bit
Reg Const Reg Reg

1< SIC > < Src >l

\ L or .S /OR.Ll Al, A2

l<dst> ADD.L2 -5, B3, B4
ADD.L1 A2, A3, A5:A4

SUB.L1 A2, A5:A4, A5:A4

ADD.L2 3, B9:B8, B9:B8

40-bit
Reg
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Register to register data transfer

To move the content of a register (A or B)
to another register (B or A) use the move
“MV”’ Instruction, e.g.:

MV A0, B0
MV B6,B7

To move the content of a control register
to another register (A or B) or vice-versa
use the MV C instruction, e.g.:

MVC IFR, A0
MVC A0, IRP
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TMS320C6211/6711 Instruction Set
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'C6211 Instruction Set (by category)

Arithmetic

Logical

ABS
ADD
ADDA
ADDK
ADD?2
MPY
MPYH
NEG
SMPY
SMPYH
SADD
SAT

ZERO

AND
CMPEQ
CMPGT
CMPLT
NOT
OR
SHL
SHR
SSHL
XOR

Data Mgmt

LDB/H/W
MV

MVC
MVK
MVKL
MVKH
MVKLH
STB/H/W

Program Ctrl

Bit Mgmt

CLR
EXT
LMBD
NORM
SET

B
IDLE
NOP

Note: Refer to the 'C6000 CPU Reference Guide for more details.
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'C6211 Instruction Set (by unit)

.S Unit L Unit

ADD ABS NOT
ADDK ADD OR
ADD?2 AND SADD
AND CMPEQ SAT

B CMPGT SSUB
CLR CMPLT SUB
EXT LMBD SUBC
MV MV XOR
MVC NEG ZERO
MVK (0] 2\Y |

MVKL
MVKH .D Unit

: ADD STB/H/W
.M Unit ADDA SUB

MPY SMPY LDB/H/W SUBA

MPYH SMPYH MV ZERO
NEG

Other Note: Refer to the 'C6000 CPU .
NOP IDLE Reference Guide for more details.
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.S Unit

ABSSP
ABSDP
CMPGTSP
CMPEQSP
CMPLTSP
CMPGTDP
CMPEQDP

CMPLTDP
RCPSP
RCPDP
RSQRSP
RSQRDP
SPDP

L Unit

ADDDP
ADDSP
DPINT
DPSP
INTDP
INTDPU

INTSP
INTSPU
SPINT
SPTRUNC
SUBSP
SUBDP

M Unit

.D Unit

MPYSP
MPYDP

MPYI
MPYID

ADDAD

LDDW

Note: Refer to the 'C6000 CPU

‘C6711 Additional Instructions (by unit)

‘C67x

Reference Guide for more details.
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TMS320C6211/6711 Memory Map
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‘C6211 Memory Map

64K x 8 Internal External Memory
(L2 cache) ¢ Async (SRAM, ROM, etc.)

¢ Sync (SBSRAM, SDRAM)

Byte Address
0000_0000

Internal Memory

On-chip Peripherals ¢ Unified (data or prog)

¢ 4 blocks - each can be
RAM or cache

0180_0000

8000 0000

— 256M x 8 External
@ Level 1 Cache
(1)256M x 8 External| & 4KB Program
¢ 4KB Data

+ Not in map

9000_0000

A000_0000

@ 256M x 8 External

B000_0000

@ 256M x 8 External

FFFEF FFFF
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TMS320C6211/6711 Peripherals
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'C6x System Block Diagram

Memory

External I
< Internal Buses
Memory

(STV-0V) S8y
(ST9-09) S3Y
i e Resfaniy Rl lesly-

Control Regs

CPU
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Internal

External
Interface

A G—
x32

Peripherals

—

x32
ﬁ

can perform 64-bit

‘Cox Internal Buses

/

Program Addr

Program Data

Data Addr - T1

Data Data -T1

Data Addr - T2

Data Data -T2

DMA Addr - Read

DMA Data - Read

DMA Addr - Write

DMA Data - Write

data loads.
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'C6x System Block Diagram

Memory

I

Internal Buses

| |

(STV-0V) S8y
(ST9-09) S3Y
i e Resfaniy Rl lesly-

Control Regs

CPU
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‘C6201/11 Memory Maps

@ 16M x 8 External 64K x 8 Internal
(L2 cache)

@ 4M x 8 External

Int’l Prog (64K instr)

On-chip Peripherals On-chip Peripherals
@ 16M x 8 External

@ 16M x 8 External

@ 256M x 8 External

@ 256M x 8 External

@ 256M x 8 External

@ 256M x 8 External

Int’l Data (128K bytes)

‘C6202 ‘C6211
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'C6x System Block Diagram

Plﬁ)il;/}m Data Ram

Addr I I

Internal Buses

D@32 | I I

(STV-0V) S8y
(ST9-09) S3Y
Nl ol esllania N R ol ey la -

Control Regs

CPU
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'Cox Peripherals

McBSP

External EMIF
Memory

HPI/XB
DMA

Timer

Boot

PLL

EMIE (External Memory Interface) McBSP (Multi-Channel Buffered
- Glueless access to async/sync memory Serial Port)

EPROM, SRAM, SDRAM, SBSRAM - High speed sync serial comm
- TI/E1/MVIP interface

DMA/EDMA (Enhance Direct Memory Acces)
- 4/16 Channels HPI (Host Port Interface)
/Expansion Bus (XB)

- 16/32-bit host UP access

BOOT

- Boot from 4M external block
- Boot from HPI/XB Timer/Counters

- Two 32-bit Timer/Counters

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002




Clocking - Basic Definitions

What is a ““clock cycle”’?

‘Cox

PLL

.4 |
x4

— CLKOUT1 (‘Cé6x clock cycle)
— CLKOUT2 (1/2 CLKOUT1)

When we talk
about cycles ...

CLKIN -MHz PLL | CLKOUTI - MI{Z CLKOUT2 - MHz MIPs (max)

250
200
50
25

x1
x1
x4
x4

250 (4ns)/
200 (5ns)
200

100 (10ns)

125 2000
100 1600
100 1600
50 300
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'Cé6x System Block Diagram (Final)

Program
RAM

Addr I I

. Internal Buses
D (32) I I DMA

Data Ram

Serial Port

Host Port

Boot Load

(STV-0V) S8y
(ST9-09) S3Y

Timers

Control Regs Pwr Down

CPU
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Internal Memory Summary

L1 Memory

L2 Memory

Program
Memory

Data
Memory

’C6201B 64KB
1 blk Pgm/Cache

’C6701 64KB
1 blk Pgm/Cache

’C6202 256KB
1 blk Pgm/Cache
1 blk Mapped Pgm

’C6211/C6711 4 KB
1 blk Cache

64KB External
2 blks
4 banks

64KB External
2 blks
8 banks

128 KB External
2 blks
4 banks

4 KB 64 KB
1 blk Cache 4 blk Mapped
Cache

TMS320C62x DSP Generation
Parametric Table

TMS320C67x DSP Generation
Parametric Table

TMS320C64x DSP Generation
Parametric Table
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‘C6000 Device Summary

Device @~ MIPS MHz Kbytes pins $ Periphs
6201B 1600 200 128 352 80-110 D2H
6202 2000 250 384 352 120-150 D3X
6211 1200 150 72 256 20-40 E2H

TMS320 MFLOPS MHz Kbytes pins mm W $ Periphs
6701 1000 167 128 352 35 1.9 170-200 D2H
6711 600 100 72 256 27 0.9 20-40 E2H

Peripherals Legend: TMS320C62x DSP Generation TMS320C64x DSP Generation
D,E: DMA.,EDMA  Parametric Table Parametric Table
2,3: # of McBSPs

H,X: HPL XBUS TMS320C67x DSP Generation
Parametric Table
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6201 r1

6201 r2
6201B

6701

6202

6211

6711

’C6000 History

1Q97 coincident ‘C6x architectural announcement.
Sample CPU core, minimal peripherals.

4Q97. Full production, with peripherals.

4Q98. Power reduced, .18 micron silicon,
double ports into internal data memory.

3Q98. Pin-for-pin compatible floating-point version of
‘C6201. 1GFLOP (@ 167MHz) performance.

2Q99. 2000 MIPS @ 250MHz. 2-3x 6201 on-chip memory.
Replaced HPI with Expansion Bus (32-bit HPI + more).

3Q99. 2 cents per MIPS! 1200MIPS @ 150MHz as low as $25.
Double-level cache, enhanced DMA.

Announced 3/1/99. 6701 floating-point CPU with 6211-like
memory/peripherals. Volume pricing under $20.
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‘C6x Family Part Numbering

¢ Example = TMS320LC6201PKGA200

+ TMS320 =TI DSP

+ L = Place holder for voltage levels

+ C6 = C6x family

v 2 = Fixed-point core
01 = Memory/peripheral configuration
PKG = Pkg designator (actual letters TBD)
A = -40 to 85C (blank for 0 to 70C)
200 = Core CPU speed in Mhz
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Device Summary Table

Device Int Mem Ext Mem Peripherals

6201/6701 64K Data 3x16M DMA
16K Instr 1 x4M 2 McBSP
HPI (16-bit)
2 Timer/Counters (32-bit)

128K Data 3 x 16M DMA
48K Instr 1 x4M 2 McBSP
4 x 256M ---- XBus (32-bit)
2 Timer/Counters (32-bit)

4K Data Cache 4 x 256M EDMA
4K Prog Cache 2 McBSP
64K RAM/Cache HPI (16-bit)
2 Timer/Counters (32-bit)

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002




Data Registers

Multiply Unit

Result
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