TMS320C6000 Architectural
Overview

LLearning Objectives

¢ Describe C6000 CPU architecture.
¢ Introduce some basic instructions.
¢ Describe the C6000 memory map.
¢ Provide an overview of the peripherals.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

General DSP System Block Diagram

External
Memory

Internal Memory

I

Internal Buses

Central
Processing
Unit

N AT I - R

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

TMS320C6000 DSP Cores

Program Fetch

Control
Instruction Dispatch Registers

Instruction Decode

Control
Logic
A Register File B Register File

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

C6000 Functional Units
| N D \Y |

Integer Adder Integer Adder Integer Adder Integer
Multiplier

Logical Logical Load-Store
Integer Comparison Shifting

Bit Counting Bit Manipulation
Constant
Branch/Control
Paired Short Math

C67x Additions
L S D \Y|
FP Adder FP Compare Load Double FP Multiplier
FP Conversion FP Conversion
FP Reciprocal

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

TMS320C6712

600 MFLOPS/100 MHz at

External Level 1 $9.95 in Volume

Memory Program
Interface Cache

4K Bytes Code compatibility with all
C6000 devices

Enhanced DMA

C(EDMﬁ) Dual-level cache memory
ontroller Levlslle fn (c::;:he/ 'C67x Core architecture (same as

64K Bytes C6211/C6711) enables
systems savings

. 2 Multi-Channel
Serial Ports Enhanced DMA (EDMA) is

L 11 O . - .
: Data optimized for efficiency in
- Cache small RAM devices

4K Bytes

TMS320C6712 Digital Signal Processor .
256-pin BGA (same

package as C6711)

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Instruction Fetch Control
Registers

Advanced
Emulation

Instruction Decode
Data Path 2

B31-B16

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Cache Data Flow

CPU requests
data

Move Data from

. n H L]
Is data in L17% Is data in L27 External to L2

Send Data Move Data
to CPU from L2 to L1

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

L2: Direct On-Chip I/0O Typical
Cache Architecture

= Lacks non-cacheable regions

= Requires external storage
of peripheral data

External

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

C6211/C6711/C6712 L.2:
Direct On-Chip I/0 C6712

= Configurable L2 allows real-time processing

External Mapped

External Memory
Memory Interface

Peripheral

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Implementation of Sum of Products (SOP)

It has been shown in
Chapter 1 that SOP is the
key element for most DSP
algorithms.

So let’s write the code for
this algorithm and at the
same time discover the
C6000 architecture.

N
- Z an*Xn
I |

=a, *X,+a,* X, +... + ay ¥ Xy
Two basic
operations are required
for this algorithm.
(1) Multiplication
(2)
Therefore two basic

instructions are required

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Implementation of Sum of Products (SOP)

So let’s implement the SOP
algorithm!

The implementation in this
module will be done in
assembly.

N
Y = 2 a*x

n=1
=a, ¥*xX, +a,* X, +...

Two basic
operations are required
for this algorithm.
(1) Multiplication

(2)
Therefore two basic

instructions are required

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Multiply (MPY)

N
Y = 2 a*x

n=1

—q * 2 =
=a, *X;+a, %X, +... + ay ¥ xy

The multiplication of a, by x, 1s done in
assembly by the following instruction:

MPY al, x1, Y

This instruction is performed by a
multiplier unit that is called “.M”’

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Multiply (.M unit)

The . M unit performs multiplications in
hardware

MPY .M al, x1, Y

Note: 16-bit by 16-bit multiplier provides a 32-bit result.
32-bit by 32-bit multiplier provides a 64-bit result.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Addition (.?

MPY M al, x1, prod
ADD .? Y, prod, Y

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Add (.L unit)

MPY M al, x1, prod
ADD L Y, prod, Y

RISC processors such as the C6000 use registers to
hold the operands, so lets change this code.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Register File - A

Register File A

al
x1

MPY M al, x1, prod
ADD L Y, prod, Y

<<
-

32-bits

Let us correct this by replacing a, x, prod and Y by the
registers as shown above.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Speciiying Register Names

40
Register File A
Y = 2 a*x
al S
x1

MPY M A0,Al A3
ADD L Ad, A3, Ad

<<
-

32-bits

The registers A0, A1, A3 and A4 contain the values to
be used by the instructions.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Speciiying Register Names

40
Register File A
Y = 2 a*x
al S
x1

MPY M A0,Al A3
ADD L Ad, A3, Ad

<<
-

32-bits

Register File A contains 16 registers (A0 -A15) which
are 32-bits wide.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Data loading

Register File A

al

x1

Q: How do we load the
operands into the registers?

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

L.oad Unit **.D”

Register File A Q: How do we load the
al operands into the registers?

x1

A: The operands are loaded
into the registers by loading
them from the memory
using the .D unit.

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

L.oad Unit **.D”

Register File A

It is worth noting at this

al stage that the only way to

x1 access memory is through the
.D unit.

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

L.oad Instruction

Register File A Q: Which instruction(s) can be
al used for loading operands
x1 from the memory to the

registers?

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Load Instructions (LDB, LDH,LDW,LDDW)

Register File A Q: Which instruction(s) can be
al used for loading operands
x1 from the memory to the

registers?

prod : . ;
Y A: The load instructions.

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Using the Load Instructions

Before using the load unit you Data address

have to be aware that this 00000000
processor is byte addressable,
which means that each byte is 00000002

represented by a unique 00000004
address. 00000006
Also the addresses are 32-bit 00000008

—

FFFFFFFF

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Using the Load Instructions

The syntax for the load Data address

instruction 1s: al 00000000

x1 00000002
00000004
prod 00000006

)% 00000008

LD *Rn,Rm

Where:

Rn is a register that contains
the address of the operand to

be loaded $

and

Rm is the destination register. FFFFFFFF

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Using the Load Instructions

The syntax for the load Data address

instruction 1s: al 00000000

x1 00000002
00000004

The question now is how many prod 00000006
bytes are going to be loaded Y 00000008

into the destination register? w

LD *Rn,Rm

FFFFFFFF

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Using the Load Instructions

The syntax for the load Data address

instruction 1s: al 00000000

x1 00000002
00000004
The answer, is that it depends 00000006
on the instruction you choose: Y 00000008
LDB: loads one byte (8-bit)
LDH: loads half word (16-bit) $
LDW: loads a word (32-bit)
LDDW: loads a double word (64-bit)

LD *Rn,Rm

FFFFFFFF

Note: LD on its own does not
exist.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Using the Load Instructions

The syntax for the load 1 Data 0 address

instruction 1s: 0xA 00000000

0xC 00000002
0x2 00000004
Example: 0x4 00000006

If we assume that A5 = 0x4 then: 0x6 00000008
(1) LDB *A5, A7 ; gives A7 = 0x00000001 0x8 /037\

(2) LDH *A5,A7; gives A7 = 0x00000201 w

(3) LDW *AS5,A7; gives A7 = 0x04030201

(4) LDDW *AS5,A7:A6; gives A7:A6 =
0x0807060504030201

LD *Rn,Rm

FFFFFFFF

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Using the Load Instructions

The syntax for the load Data address
Instruction 1s: OxA 00000000

0xC 00000002
0x2 00000004
0x4 00000006

0x6 00000008
If data can only be accessed by the o T
load instruction and the .D unit, SN

how can we load the register w
pointer Rn in the first place?

LD *Rn,Rm

Question:

FFFFFFFF

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Loading the Pointer Rn

¢ The instruction MVKL will allow a
move of a 16-bit constant into a register
as shown below:

MVKL .? a, AS

(‘a’ is a constant or label)

How many bits represent a full address?
32 bits

So why does the instruction not allow a
32-bit move?

All instructions are 32-bit wide (see
instruction opcode).

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Loading the Pointer Rn

¢ To solve this problem another instruction
is available:

MVKH

ah

egc. MVKH o a, AS

(‘a’ is a constant or label)

ah

¢ Finally, to move the 32-bit address to a
register we can use:

MVKL a, A5
MVKH W

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Loading the Pointer Rn

¢ Always use MVKL then MVKH, look at
the following examples:

Example 1
AS = 0x87654321

MVKL 0x1234FABC, AS 0x1234FABC, AS
AS = OxFFFFFABC (sign extension)

Example 2

MVKH 0x1234FABC, AS 0x1234FABC, A5
AS = 0x12344321

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

LDH, MVKL and MVKH

Register File A

a
X

ptl, AS
ptl, AS

pt2, A6
pt2, A6

*A5, A0
*A6, Al
A0, A1, A3
Ad, A3, Ad

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Creating a loop

So far we have only
implemented the SOP ptl, AS
for one tap only, i.e. ptl, AS
pt2, A6
pt2, A6

_— ¥
Y=a,; *x, A5, AO

*A6, Al
A0, A1, A3

So let’s create a loop
A4, A3, Ad

so that we can
implement the SOP

for N Taps.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Creating a loop

So far we have only
implemented the SOP
for one tap only, i.e.

With the C6000 processors

V= q. * there are no dedicated
=a; " Xy instructions such as block

repeat. The loop is created
using the B instruction.

So let’s create a loop
so that we can
implement the SOP
for N Taps.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

What are the steps for creating a loop

. Create a label to branch to.

. Add a branch instruction, B.

. Create a loop counter.

. Add an instruction to decrement the loop counter.

. Make the branch conditional based on the value in

the loop counter.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

1. Create a label to branch to

MVKL ptl, A5
MVKH ptl, A5

MVKL pt2, A6
MVKH pt2, A6

*A5, A0
*A6, Al

A0, A1, A3
Ad, A3, Ad

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

2. Add a branch instruction, B.

MVKL ptl, A5
MVKH ptl, A5

MVKL pt2, A6
MVKH pt2, A6

*AS, A0
*A6, Al
A0, Al, A3
Ad, A3, A4
loop

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Which unit is used by the B instruction?

d

X

Register File A

G

MVKL
MVKH

MVKL
MVKH

ptl, AS
ptl, AS

pt2, A6
pt2, A6

*AS, A0
*A6, Al
A0, Al, A3
Ad, A3, A4
loop

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Which unit is used by the B instruction?

d

X

Register File A

G

MVKL .
MVKH .

MVKL .
MVKH .

ptl, AS
ptl, AS

pt2, A6
pt2, A6

*AS, A0
*A6, Al
A0, Al, A3
Ad, A3, A4
loop

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

3. Create a loop counter.

MVKL .S ptl, A5
MVKH .S ptl, A5

— | MVKL . pt2, A6
X MVKH .S pt2, A6
MVKL . count, B0

Register File A

d

LDH . *AS, A0
LDH . *A6, Al

\Y 1 0 ‘G A0, Al, A3
ADD . Ad, A3, A4
B . loop

B registers will be introduced later

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

4. Decrement the loop counter

MVKL .S ptl, A5
MVKH .S ptl, A5

— | MVKL . pt2, A6
X MVKH .S pt2, A6
MVKL . count, B0

Register File A

d

LDH . *AS, A0
LDH . *A6, Al

\Y 1 0 ‘G A0, Al, A3
ADD . Ad, A3, A4
SUB . B0, 1, B0
B . loop

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

5. Make the branch conditional based on the
value in the loop counter

¢ What is the syntax for making instruction
conditional?

[condition] Instruction Label

e.g.
[B1] B loop

(1) The condition can be one of the following
registers: A1, A2, Bo, B1, B2.

(2) Any instruction can be conditional.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

5. Make the branch conditional based on the
value in the loop counter

¢ The condition can be inverted by adding the
exclamation symbol *“!”’ as follows:

[!condition] Instruction Label
e.g.

[!BO] B loop ;branch if BO =0

[BO] B loop ;branch if B0 !=0

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

5. Make the branch conditional

d

X

Register File A

G

MVKL .
MVKH .

MVKL .
MVKH .
MVKL .

LDH
LDH
MPY
ADD
SUB
B

ptl, AS
ptl, AS

pt2, A6
pt2, A6
count, B0

*AS, A0
*A6, Al
A0, Al, A3
Ad, A3, A4
B0, 1, B0
loop

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

More on the Branch Instruction (1)

€ With this processor all the instructions are
encoded in a 32-bit.

@ Therefore the label must have a dynamic range
of less than 32-bit as the instruction B has to be
coded.

32-bit

<

B 21-bit relative address

® Casel: B .S1 label
® Relative branch.
® Label limited to +/- 220 offset.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

More on the Branch Instruction (2)

& By specifying a register as an operand instead
of a label, it is possible to have an absolute
branch.

This will allow a dynamic range of 2°2.

32-bit

>

5-bit register
B code

Case 2: B .S2 register
€ Absolute branch.
€ Operates on .S2 ONLY!

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Testing the code

MVKL .S2 ptl, A5
MVKH .S2 ptl, A5

MVKL .S2 pt2, A6
MVKH .S2 pt2, A6

This code performs the following MVKL . count, B0

operations:

LDH .D *AS5,A0
LDH .D *A6,Al
MPY M A0,Al,A3

However, we would like to perform: ADD . A4, A3, Ad
a,%X, +a, %X, + 8,%X, + ... + ay¥Fxy SUB . B0, 1, BO

b8 & * &

B . loop

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Modifying the pointers

MVKL .S2 ptl, A5
MVKH .S2 ptl, A5

MVKL . pt2, A6
MVKH . pt2, A6
MVKL . count, B0

The solution is to modify the pointers LLDH . *AS, AQ

LDH . *A6, Al

\Y 1 0 ‘G A0, Al, A3
ADD . Ad, A3, A4
SUB . B0, 1, B0
B . loop

AS and A6.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Indexing Pointers

Pointer
Modified

Pointer No

Description

In this case the pointers are used but not modified.

R can be any register

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Indexing Pointers

Pointer
Modified

*R Pointer No
*+R[disp] + Pre-offset No
*—R[disp] - Pre-offset No

Syntax Description

In this case the pointers are modified BEFORE being used
and RESTORED to their previous values.

+ [disp] specifies the number of elements size in DW (64-bit), W
(32-bit), H (16-bit), or B (8-bit).

+ disp = R or 5-bit constant.

+ R can be any register.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Indexing Pointers

Pointer
Modified

*R Pointer No

*+R [disp] + Pre-offset No

*—R[disp] - Pre-offset No
*++R [disp] Pre-increment
*——R[disp] Pre-decrement

Syntax Description

In this case the pointers are modified BEFORE being used
and NOT RESTORED to their Previous Values.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Indexing Pointers

Pointer
Modified

*R Pointer No

*+R [disp] + Pre-offset No
*—R [disp] - Pre-offset No
*++R[disp] Pre-increment Yes
*——R[disp] Pre-decrement Yes
*R++ [disp] Post-increment Yes
*R——[disp] Post-decrement Yes

Syntax Description

In this case the pointers are modified AFTER being used
and NOT RESTORED to their Previous Values.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Indexing Pointers

Pointer
Modified

*R Pointer No
*+R[disp] + Pre-offset No
*—R[disp] - Pre-offset No

*++R[disp] Pre-increment Yes
*——R[disp] Pre-decrement Yes
*R++ [disp] Post-increment Yes
*R——[disp] Post-decrement Yes

Syntax Description

+ [disp] specifies # elements - size in DW, W, H, or B.
+ disp = R or 5-bit constant.
+ R can be any register.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Modifty and testing the code

MVKL .S2 ptl, A5
MVKH .S2 ptl, A5

MVKL . pt2, A6
MVKH . pt2, A6
MVKL . count, B0

This code now performs the following LLDH . *AS++, A0
operations: 19)): *A6++, Al

a,*x, +a,*x; + a,*x, +... +ay*xy MPY A0. Al. A3

O 9 9
ADD . Ad, A3, Ad
SUB . B0, 1, B0
B . loop

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Store the final result

MVKL .S2 ptl, A5
MVKH .S2 ptl, A5

MVKL . pt2, A6
MVKH . pt2, A6
MVKL . count, B0

This code now performs the following LLDH . *AS++, A0

operations: LDH . *A6++, Al

b8 & & *

\Y 1 0 ‘G A0, Al, A3
ADD . Ad, A3, A4
SUB . B0, 1, B0
B . loop

STH . A4, *A7

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Store the final result

MVKL .S2 ptl, A5
MVKH .S2 ptl, A5

MVKL . pt2, A6
MVKH . pt2, A6
MVKL . count, B0

LDH . *AS++, A0
LDH . *A6++, Al
1\Y |) " A0, Al, A3
ADD . Ad, A3, A4
SUB . B0, 1, BO
B . loop

STH . Ad, *A7

The Pointer A7 has not been initialised.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Store the final result

MVKL .S2 ptl, A5
MVKH .S2 ptl, A5

MVKL .S2 pt2, A6
MVKH .S2 pt2, A6

MVKL . pt3, A7
MVKH . pt3, A7
MVKL . count, B0

The Pointer A7 is now initialised.
LDH . *AS5++, AO
LDH . *A6++, Al
MPY . A0, Al, A3
ADD . A4, A3, A4
SUB : B0, 1, B0

[BO] B . loop
STH . Ad, *A7

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

What is the initial value of A4?

MVKL .S2 ptl, AS
MVKH .S2 ptl, AS

MVKL .S2 pt2, A6
MVKH .S2 pt2, A6

MVKL . pt3, A7
MVKH . pt3, A7
A4 is used as an accumulator, MVKL . count, B0

so it needs to be reset to zero. ZERO . A4
LDH . *AS++, A0

LDH . *A6++, Al

MPY . A0, Al, A3

ADD . A4, A3, A4

SUB . B0, 1, B0
[BO] B . loop

STH . Ad, *A7

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Increasing the processing power!

Register File A

S1

How can we add
more processing
power to this

M1

processor?

L1

D1

|

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Increasing the processing power!

Register File A

St (1) Increase the clock

frequency.

M1

(2) Increase the number
of Processing units.

L1

D1

|

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

To increase the Processing Power, this processor has two
sides (A and B or 1 and 2)

Register File A Register File B

S1 S2

M1 M2

L1 L2

D1 D2

|

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Can the two sides exchange operands in order to increase
performance?

Register File A Register File B

S1 S2

M1 M2

L1 L2

D1 D2

|

Data Memory

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

The answer is YES but there are limitations.

¢ To exchange operands between the two
sides, some cross paths or links are
required.

What is a cross path?

¢ A cross path links one side of the CPU to
the other.

¢ There are two types of cross paths:
¢ Data cross paths.
¢ Address cross paths.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Data Cross Paths

Data cross paths can also be referred to
as register file cross paths.

These cross paths allow operands from
one side to be used by the other side.

There are only two cross paths:

¢ one path which conveys data from side B
to side A, 1X.

¢ one path which conveys data from side A
to side B, 2X.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

TMS320C67x Data-Path

LD1 32 MSB
ST1 4

Register
filee A
(AD-A15)

LD1 32 LSE

Ot

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Data Cross Paths

¢ Data cross paths only apply to the .L, .S
and .M units.

¢ The data cross paths are very useful,
however there are some limitations in
their use.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Data Cross Path Limitations

A

D'VX

(1) The destination register must be 1x
on same side as unit.

(2) Source registers - up to one cross
path per execute packet per side. B

Execute packet: group of instructions that
execute simultaneously.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Data Cross Path Limitations

A

L1 —

.M1
.S1 I | \[2X

ADD .Lix AO0,A1,B2
MPY .Mix A0,B6,A9 1x
SUB .Six A8,B2,AS8
ADD .Lix AO0,B0,A2 B

Means that the SUB and ADD
belong to the same fetch packet,
therefore execute
simultaneously.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Data Cross Path Limitations

A

L1 —

M1
.S1 I | \[2X

eg:
ADD .Lix A0,A1,B2
MPY .Mix A0,B6,A9 1x

B

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Data Cross Paths for both sides

A

{| 2X

<Src>
(J Sz =

<Src>
1.2 _ﬂ
M2 — B

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Address cross paths

- Data

A

- Addr

D1

(1) The pointer must be on the same
side of the unit.

LDW.D1T1 *A0,AS5
STW.D1T1 A5, *A0

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

L.oad or store to either side

Datal A5

>

A

DA1=T1

D1

DA2=T2

LDW.D1T1 *AQ,AS5
LDW.D1T2 *AQ,B5 B

) Data?2 B5

>

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Standard Parallel L.oads

AS

>

A

D2

B

LDW.D1T1 *A0,A5
| | LDW.D2T2 *BO,B5

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Parallel Load/Store using address cross paths

. Datal AS

A

D1

D2

B

LDW.D1T2 *A0,B5
|| STW.D2T1 A5, *BO

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Fill the blanks ... Does this work?

) Datal

A

DA1=T1

DA2 =T2

D2

B

LDW.D1___ *A0, B5
|| STW.D2___ B6, *B0O

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Not Allowed!

DA2 = T;

D2

B

B5
LDW.D1T2 *A0,B5 7

B
| | STW.D2T2 B6, *BO 6

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Not Allowed!
Parallel accesses: both cross or neither cross

) Datal

A

D1

DA2 = T;

D2

B

B5
LDW.D1T2 *A0,B5 7

B
| | STW.D2T2 B6, *BO 6

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Conditions Don’t Use Cross Paths

¢ If a conditional register comes from the
opposite side, it does NOT use a
data or address cross-path.

¢ Examples:

[B2] ADD .L1 A2,A0,6 A4
[A1l] LDW .D2 *BO,B5

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

‘C62x Data-Path Summary

P
Ref Guide

asf
long dst 8 :
long src

Full CPU Datapath
(Pg2-2)

long src
fong dst Register
st file A

51 srci {AD-A15)

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

‘C67x Data-Path Summary

sret

.L1 E"CZ'_@_'

dst
long dsf
long sre

LD1 32 MSB
ST1 4

long src Reqgister
long dst file A
dst (AD-A15)
51

srcl
sres

st
srcl

sre2

LD1 32 LSE

st
srcl
srce

Ot

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Cross Paths - Summary

v, Data

+ Destination register on same side as unit.

+ Source registers - up to one cross path per
execute packet per side.

+ Use “x”’ to indicate cross-path.

v/ Address

+ Pointer must be on same side as unit.
+ Data can be transferred to/from either side.
» Parallel accesses: both cross or neither cross.

v/ Conditionals Don’t Use Cross Paths.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Code Review (using side A only)

40
Y = 2 a *x
I |

MVK .S1 40, A2 s A2 = 40, loop count
LDH .D1I *A5++,A0 ;AO0=a(n)

LDH .D1I *A6++,Al1 ;Al=x(n)

MPY M1 AO0,A1,A3 ;A3=a(n) *x(n)

ADD ILL1 A3,A4,A4 ;Y=Y+A3

SUB L1 A2,1, A2 ; decrement loop count
B S1 loop ; iIf A2 # 0, branch
STH .D1 A4, *A7 s FAT=Y

Note: Assume that A4 was previously cleared and the pointers are initialised.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Let us have a look at the final details
concerning the functional units.

Consider first the case of the .LL and .S
units.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Operands - 32/40-bit Register, S-bit Constant

¢ Operands can be:
+ 5-bit constants (or 16-bit for MVKL and MVKH).
+ 32-bit registers.
+ 40-bit Registers.

¢ However, we have seen that registers are only
32-bit.

So where do the 40-bit registers come from?

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Operands - 32/40-bit Register, S-bit Constant

¢ A 40-bit register can be obtained by
concatenating two registers.

¢ However, there are 3 conditions that need
to be respected:

+ The registers must be from the same side.

+ The first register must be even and the second
odd.

+ The registers must be consecutive.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Operands - 32/40-bit Register, S-bit Constant

¢ All combinations of 40-bit registers are
shown below:

40-bit Reg 40-bit Reg
«| even «| even
RY S RY

:AQ B1l:BO
:A2 B3:B2
:A4d BS5 : B4
:A6 B7:B6
:A8 B9:B8
B11:B10
B13:B1l2
B15:B14

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Operands - 32/40-bit Register, S-bit Constant

instr .unit <src>, <src>, <dst>

32-bit S-bit 32-bit 40-bit
Reg Const Reg Reg

1< SIC > < Src >1

< wws)

l<d8t>

40-bit
Reg

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Operands - 32/40-bit Register, S-bit Constant

instr .unit <src>, <src>, <dst>

5-bit 32-bit 40-bit
Reg Const Reg Reg

1< SIC > < Src >l

N T 4

l<dst>

40-bit
Reg

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Operands - 32/40-bit Register, S-bit Constant

instr .unit <src>, <src>, <dst>

Reg

5-bit 32-bit
Const Reg

40-bit
Reg

1< SIC >

N

< SIcC >l

L or.S

/OR.Ll A0, Al, A2

l<dst>

40-bit
Reg

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Operands - 32/40-bit Register, S-bit Constant

instr .unit <src>, <src>, <dst>

Reg

S-bit 32-bit
Const Reg

40-bit
Reg

1< SIC >

N

< SIcC >l

L or.S

/OR.Ll A0, Al, A2

l<dst>

40-bit
Reg

ADD.L2 -5, B3, B4

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Operands - 32/40-bit Register, S-bit Constant

instr .unit <src>, <src>, <dst>

Reg

5-bit 32-bit
Const Reg

40-bit
Reg

1< SIC >

N

< SIcC >l

L or.S

/OR.Ll A0, Al, A2

l<dst>

40-bit
Reg

ADD.L2 -5, B3, B4
ADD.L1 A2, A3, A5:A4

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Operands - 32/40-bit Register, S-bit Constant

instr

.unit

<src>,

<src>, <dst>

Reg

5-bit
Const

32-bit
Reg

40-bit
Reg

1< SIC >

N

< SIcC >l

L or.S

/OR.Ll

l<dst>

40-bit
Reg

ADD. L2
ADD.L1

SUB.L1

Al, A2
B3, B4

A3, A5:A4
A5:A4, AS5:A4

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Operands - 32/40-bit Register, S-bit Constant

instr .unit <src>, <src>, <dst>

S-bit 32-bit 40-bit
Reg Const Reg Reg

1< SIC > < Src >l

\ L or .S /OR.Ll Al, A2

l<dst> ADD.L2 -5, B3, B4
ADD.L1 A2, A3, A5:A4

SUB.L1 A2, A5:A4, A5:A4

ADD.L2 3, B9:B8, B9:B8

40-bit
Reg

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Register to register data transfer

To move the content of a register (A or B)
to another register (B or A) use the move
“MV”’ Instruction, e.g.:

MV A0, B0
MV B6,B7

To move the content of a control register
to another register (A or B) or vice-versa
use the MV C instruction, e.g.:

MVC IFR, A0
MVC A0, IRP

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

TMS320C6211/6711 Instruction Set

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

'C6211 Instruction Set (by category)

Arithmetic

Logical

ABS
ADD
ADDA
ADDK
ADD?2
MPY
MPYH
NEG
SMPY
SMPYH
SADD
SAT

ZERO

AND
CMPEQ
CMPGT
CMPLT
NOT
OR
SHL
SHR
SSHL
XOR

Data Mgmt

LDB/H/W
MV

MVC
MVK
MVKL
MVKH
MVKLH
STB/H/W

Program Ctrl

Bit Mgmt

CLR
EXT
LMBD
NORM
SET

B
IDLE
NOP

Note: Refer to the 'C6000 CPU Reference Guide for more details.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

'C6211 Instruction Set (by unit)

.S Unit L Unit

ADD ABS NOT
ADDK ADD OR
ADD?2 AND SADD
AND CMPEQ SAT

B CMPGT SSUB
CLR CMPLT SUB
EXT LMBD SUBC
MV MV XOR
MVC NEG ZERO
MVK (0] 2\Y |

MVKL
MVKH .D Unit

: ADD STB/H/W
.M Unit ADDA SUB

MPY SMPY LDB/H/W SUBA

MPYH SMPYH MV ZERO
NEG

Other Note: Refer to the 'C6000 CPU .
NOP IDLE Reference Guide for more details.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

.S Unit

ABSSP
ABSDP
CMPGTSP
CMPEQSP
CMPLTSP
CMPGTDP
CMPEQDP

CMPLTDP
RCPSP
RCPDP
RSQRSP
RSQRDP
SPDP

L Unit

ADDDP
ADDSP
DPINT
DPSP
INTDP
INTDPU

INTSP
INTSPU
SPINT
SPTRUNC
SUBSP
SUBDP

M Unit

.D Unit

MPYSP
MPYDP

MPYI
MPYID

ADDAD

LDDW

Note: Refer to the 'C6000 CPU

‘C6711 Additional Instructions (by unit)

‘C67x

Reference Guide for more details.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

TMS320C6211/6711 Memory Map

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

‘C6211 Memory Map

64K x 8 Internal External Memory
(L2 cache) ¢ Async (SRAM, ROM, etc.)

¢ Sync (SBSRAM, SDRAM)

Byte Address
0000_0000

Internal Memory

On-chip Peripherals ¢ Unified (data or prog)

¢ 4 blocks - each can be
RAM or cache

0180_0000

8000 0000

— 256M x 8 External
@ Level 1 Cache
(1)256M x 8 External| & 4KB Program
¢ 4KB Data

+ Not in map

9000_0000

A000_0000

@ 256M x 8 External

B000_0000

@ 256M x 8 External

FFFEF FFFF

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

TMS320C6211/6711 Peripherals

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

'C6x System Block Diagram

Memory

External I
< Internal Buses
Memory

(STV-0V) S8y
(ST9-09) S3Y
i e Resfaniy Rl lesly-

Control Regs

CPU

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Internal

External
Interface

A G—
x32

Peripherals

—

x32
ﬁ

can perform 64-bit

‘Cox Internal Buses

/

Program Addr

Program Data

Data Addr - T1

Data Data -T1

Data Addr - T2

Data Data -T2

DMA Addr - Read

DMA Data - Read

DMA Addr - Write

DMA Data - Write

data loads.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

'C6x System Block Diagram

Memory

I

Internal Buses

| |

(STV-0V) S8y
(ST9-09) S3Y
i e Resfaniy Rl lesly-

Control Regs

CPU

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

‘C6201/11 Memory Maps

@ 16M x 8 External 64K x 8 Internal
(L2 cache)

@ 4M x 8 External

Int’l Prog (64K instr)

On-chip Peripherals On-chip Peripherals
@ 16M x 8 External

@ 16M x 8 External

@ 256M x 8 External

@ 256M x 8 External

@ 256M x 8 External

@ 256M x 8 External

Int’l Data (128K bytes)

‘C6202 ‘C6211

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

'C6x System Block Diagram

Plﬁ)il;/}m Data Ram

Addr I I

Internal Buses

D@32 | I I

(STV-0V) S8y
(ST9-09) S3Y
Nl ol esllania N R ol ey la -

Control Regs

CPU

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

'Cox Peripherals

McBSP

External EMIF
Memory

HPI/XB
DMA

Timer

Boot

PLL

EMIE (External Memory Interface) McBSP (Multi-Channel Buffered
- Glueless access to async/sync memory Serial Port)

EPROM, SRAM, SDRAM, SBSRAM - High speed sync serial comm
- TI/E1/MVIP interface

DMA/EDMA (Enhance Direct Memory Acces)
- 4/16 Channels HPI (Host Port Interface)
/Expansion Bus (XB)

- 16/32-bit host UP access

BOOT

- Boot from 4M external block
- Boot from HPI/XB Timer/Counters

- Two 32-bit Timer/Counters

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Clocking - Basic Definitions

What is a ““clock cycle”’?

‘Cox

PLL

.4 |
x4

— CLKOUT1 (‘Cé6x clock cycle)
— CLKOUT2 (1/2 CLKOUT1)

When we talk
about cycles ...

CLKIN -MHz PLL | CLKOUTI - MI{Z CLKOUT2 - MHz MIPs (max)

250
200
50
25

x1
x1
x4
x4

250 (4ns)/
200 (5ns)
200

100 (10ns)

125 2000
100 1600
100 1600
50 300

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

'Cé6x System Block Diagram (Final)

Program
RAM

Addr I I

. Internal Buses
D (32) I I DMA

Data Ram

Serial Port

Host Port

Boot Load

(STV-0V) S8y
(ST9-09) S3Y

Timers

Control Regs Pwr Down

CPU

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Internal Memory Summary

L1 Memory

L2 Memory

Program
Memory

Data
Memory

’C6201B 64KB
1 blk Pgm/Cache

’C6701 64KB
1 blk Pgm/Cache

’C6202 256KB
1 blk Pgm/Cache
1 blk Mapped Pgm

’C6211/C6711 4 KB
1 blk Cache

64KB External
2 blks
4 banks

64KB External
2 blks
8 banks

128 KB External
2 blks
4 banks

4 KB 64 KB
1 blk Cache 4 blk Mapped
Cache

TMS320C62x DSP Generation
Parametric Table

TMS320C67x DSP Generation
Parametric Table

TMS320C64x DSP Generation
Parametric Table

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

‘C6000 Device Summary

Device @~ MIPS MHz Kbytes pins $ Periphs
6201B 1600 200 128 352 80-110 D2H
6202 2000 250 384 352 120-150 D3X
6211 1200 150 72 256 20-40 E2H

TMS320 MFLOPS MHz Kbytes pins mm W $ Periphs
6701 1000 167 128 352 35 1.9 170-200 D2H
6711 600 100 72 256 27 0.9 20-40 E2H

Peripherals Legend: TMS320C62x DSP Generation TMS320C64x DSP Generation
D,E: DMA.,EDMA Parametric Table Parametric Table
2,3: # of McBSPs

H,X: HPL XBUS TMS320C67x DSP Generation
Parametric Table

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

6201 r1

6201 r2
6201B

6701

6202

6211

6711

’C6000 History

1Q97 coincident ‘C6x architectural announcement.
Sample CPU core, minimal peripherals.

4Q97. Full production, with peripherals.

4Q98. Power reduced, .18 micron silicon,
double ports into internal data memory.

3Q98. Pin-for-pin compatible floating-point version of
‘C6201. 1GFLOP (@ 167MHz) performance.

2Q99. 2000 MIPS @ 250MHz. 2-3x 6201 on-chip memory.
Replaced HPI with Expansion Bus (32-bit HPI + more).

3Q99. 2 cents per MIPS! 1200MIPS @ 150MHz as low as $25.
Double-level cache, enhanced DMA.

Announced 3/1/99. 6701 floating-point CPU with 6211-like
memory/peripherals. Volume pricing under $20.

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

‘C6x Family Part Numbering

¢ Example = TMS320LC6201PKGA200

+ TMS320 =TI DSP

+ L = Place holder for voltage levels

+ C6 = C6x family

v 2 = Fixed-point core
01 = Memory/peripheral configuration
PKG = Pkg designator (actual letters TBD)
A = -40 to 85C (blank for 0 to 70C)
200 = Core CPU speed in Mhz

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Device Summary Table

Device Int Mem Ext Mem Peripherals

6201/6701 64K Data 3x16M DMA
16K Instr 1 x4M 2 McBSP
HPI (16-bit)
2 Timer/Counters (32-bit)

128K Data 3 x 16M DMA
48K Instr 1 x4M 2 McBSP
4 x 256M ---- XBus (32-bit)
2 Timer/Counters (32-bit)

4K Data Cache 4 x 256M EDMA
4K Prog Cache 2 McBSP
64K RAM/Cache HPI (16-bit)
2 Timer/Counters (32-bit)

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

Data Registers

Multiply Unit

Result

Dr. Naim Dahnoun, Bristol University, (c) Texas Instruments 2002

