
COMPUTER NETWORKS
CHAP 3 : TRANSPORT LAYER
0110
10 h – 12 h 24 Sep 2011

Chapter 3: Transport Layer
Our goals:
¨  understand principles

behind transport layer
services:
¤  multiplexing/

demultiplexing
¤  reliable data transfer

¤  flow control
¤  congestion control

¨  learn about transport layer
protocols in the Internet:
¤  UDP: connectionless transport
¤  TCP: connection-oriented

transport
¤  TCP congestion control

3-2

Transport Layer

Chapter 3 outline

¨  3.1 Transport-layer services
¨  3.2 Multiplexing and

demultiplexing

¨  3.3 Connectionless
transport: UDP

¨  3.4 Principles of reliable
data transfer

¨  3.5 Connection-oriented
transport: TCP
¤  segment structure

¤  reliable data transfer
¤  flow control

¤  connection management

¨  3.6 Principles of congestion
control

¨  3.7 TCP congestion control

3-3

Transport Layer

Transport services and protocols
¨  provide logical communication

between app processes running on
different hosts

¨  transport protocols run in end
systems
¤  send side: breaks app messages

into segments, passes to
network layer

¤  rcv side: reassembles segments
into messages, passes to app
layer

¨  more than one transport protocol
available to apps
¤  Internet: TCP and UDP

3-4

Transport Layer

application
transport
network
data link
physical

application
transport
network
data link
physical

Transport vs. network layer

¨  network layer: logical
communication between
hosts

¨  transport layer: logical
communication between
processes
¤  relies on, enhances, network

layer services

Household analogy:
12 kids sending letters to 12

kids
¨  processes = kids
¨  app messages = letters in

envelopes
¨  hosts = houses
¨  transport protocol = Ann

and Bill
¨  network-layer protocol =

postal service

3-5

Transport Layer

Internet transport-layer protocols

¨  reliable, in-order delivery
(TCP)
¤  congestion control

¤  flow control
¤  connection setup

¨  unreliable, unordered
delivery: UDP
¤  no-frills extension of “best-

effort” IP

¨  services not available:
¤  delay guarantees
¤  bandwidth guarantees

3-6

Transport Layer

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

Chapter 3 outline

¨  3.1 Transport-layer services
¨  3.2 Multiplexing and

demultiplexing

¨  3.3 Connectionless
transport: UDP

¨  3.4 Principles of reliable
data transfer

¨  3.5 Connection-oriented
transport: TCP
¤  segment structure

¤  reliable data transfer
¤  flow control

¤  connection management

¨  3.6 Principles of congestion
control

¨  3.7 TCP congestion control

3-7

Transport Layer

Multiplexing/demultiplexing
3-8

Transport Layer

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2 P3 P4 P1

host 1 host 2 host 3

= process = socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with
header (later used for
demultiplexing)

Multiplexing at send host:

How demultiplexing works

¨  host receives IP datagrams
¤  each datagram has source IP

address, destination IP address
¤  each datagram carries 1

transport-layer segment
¤  each segment has source,

destination port number
¨  host uses IP addresses & port

numbers to direct segment to
appropriate socket

3-9

Transport Layer

source port # dest port #
32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Connectionless demultiplexing

¨  Create sockets with port
numbers:

DatagramSocket mySocket1 = new
DatagramSocket(12534);

DatagramSocket mySocket2 = new
DatagramSocket(12535);

¨  UDP socket identified by two-
tuple:

(dest IP address, dest port number)

¨  When host receives UDP
segment:
¤  checks destination port number

in segment
¤  directs UDP segment to socket

with that port number

¨  IP datagrams with different
source IP addresses and/or
source port numbers directed
to same socket

3-10

Transport Layer

Connectionless demux (cont)

Transport Layer

3-11

DatagramSocket serverSocket = new DatagramSocket(6428);

Client
IP:B

P2

client
 IP: A

P1 P1 P3

server
IP: C

SP: 6428
DP: 9157

SP: 9157
DP: 6428

SP: 6428
DP: 5775

SP: 5775
DP: 6428

SP provides “return address”

Connection-oriented demux

¨  TCP socket identified by 4-
tuple:
¤  source IP address

¤  source port number
¤  dest IP address

¤  dest port number

¨  recv host uses all four values
to direct segment to
appropriate socket

¨  Server host may support
many simultaneous TCP
sockets:
¤  each socket identified by its own

4-tuple

¨  Web servers have different
sockets for each connecting
client
¤  non-persistent HTTP will have

different socket for each
request

3-12

Transport Layer

Connection-oriented demux (cont)

Transport Layer

3-13

Client
IP:B

P1

client
 IP: A

P1 P2 P4

server
IP: C

SP: 9157
DP: 80

SP: 9157
DP: 80

P5 P6 P3

D-IP:C
S-IP: A
D-IP:C

S-IP: B

SP: 5775
DP: 80

D-IP:C
S-IP: B

Chapter 3 outline

¨  3.1 Transport-layer services
¨  3.2 Multiplexing and

demultiplexing

¨  3.3 Connectionless
transport: UDP

¨  3.4 Principles of reliable
data transfer

¨  3.5 Connection-oriented
transport: TCP
¤  segment structure

¤  reliable data transfer
¤  flow control

¤  connection management

¨  3.6 Principles of congestion
control

¨  3.7 TCP congestion control

3-14

Transport Layer

UDP: User Datagram Protocol [RFC 768]
¨  “no frills,” “bare bones”

Internet transport protocol

¨  “best effort” service, UDP
segments may be:
¤  lost
¤  delivered out of order to

app

¨  connectionless:
¤  no handshaking between

UDP sender, receiver
¤  each UDP segment handled

independently of others

Why is there a UDP?
¨  no connection establishment

(which can add delay)

¨  simple: no connection state at
sender, receiver

¨  small segment header

¨  no congestion control: UDP can
blast away as fast as desired

3-15

Transport Layer

UDP: more
¨  often used for streaming

multimedia apps
¤  loss tolerant
¤  rate sensitive

¨  other UDP uses
¤  DNS

¤  SNMP

¨  reliable transfer over UDP: add
reliability at application layer
¤  application-specific error

recovery!

3-16

Transport Layer

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

UDP checksum

Sender:
¨  treat segment contents as

sequence of 16-bit integers

¨  checksum: addition (1’s
complement sum) of segment
contents

¨  sender puts checksum value
into UDP checksum field

Receiver:
¨  compute checksum of received

segment

¨  check if computed checksum equals
checksum field value:
¤  NO - error detected

¤  YES - no error detected. But
maybe errors nonetheless? More
later ….

3-17

Transport Layer

Goal: detect “errors” (e.g., flipped bits) in
transmitted segment

Internet Checksum Example

Transport Layer

3-18

¨  Note
¤ When adding numbers, a carryout from the most

significant bit needs to be added to the result

¨  Example: add two 16-bit integers

1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0
1 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

wraparound

sum
checksum

Chapter 3 outline

¨  3.1 Transport-layer services
¨  3.2 Multiplexing and

demultiplexing

¨  3.3 Connectionless
transport: UDP

¨  3.4 Principles of reliable
data transfer

¨  3.5 Connection-oriented
transport: TCP
¤  segment structure

¤  reliable data transfer
¤  flow control

¤  connection management

¨  3.6 Principles of congestion
control

¨  3.7 TCP congestion control

3-19

Transport Layer

Principles of Reliable data transfer

¨  characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

3-20

Transport Layer

Principles of Reliable data transfer

¨  characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

3-21

Transport Layer

Principles of Reliable data transfer

¨  characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

3-22

Transport Layer

Reliable data transfer: getting started
3-23

Transport Layer

send
side

receive
side

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Reliable data transfer: getting started

We’ll:
¨  incrementally develop sender, receiver sides of reliable

data transfer protocol (rdt)

¨  consider only unidirectional data transfer
¤  but control info will flow on both directions!

¨  use finite state machines (FSM) to specify sender,
receiver

3-24

Transport Layer

state
1

state
2

event causing state transition
actions taken on state transition

state: when in this
“state” next state

uniquely determined
by next event

event
actions

Rdt1.0: reliable transfer over a reliable channel
¨  underlying channel perfectly reliable

¤  no bit errors

¤  no loss of packets

¨  separate FSMs for sender, receiver:
¤  sender sends data into underlying channel

¤  receiver read data from underlying channel

3-25

Transport Layer

Wait for
call from

above packet = make_pkt(data)
udt_send(packet)

rdt_send(data)
extract (packet,data)
deliver_data(data)

Wait for
call from

below

rdt_rcv(packet)

sender receiver

Rdt2.0: channel with bit errors
¨  underlying channel may flip bits in packet

¤  checksum to detect bit errors

¨  the question: how to recover from errors:
¤  acknowledgements (ACKs): receiver explicitly tells sender that pkt

received OK
¤  negative acknowledgements (NAKs): receiver explicitly tells sender

that pkt had errors
¤  sender retransmits pkt on receipt of NAK

¨  new mechanisms in rdt2.0 (beyond rdt1.0):
¤  error detection
¤  receiver feedback: control msgs (ACK,NAK) rcvr->sender

3-26

Transport Layer

rdt2.0: FSM specification

Transport Layer

3-27

Wait for
call from

above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below sender

receiver
rdt_send(data)

Λ	

rdt2.0: operation with no errors

Transport Layer

3-28

Wait for
call from

above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Λ	

rdt2.0: error scenario

Transport Layer

3-29

Wait for
call from

above

snkpkt = make_pkt(data, checksum)
udt_send(sndpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 isNAK(rcvpkt)

udt_send(NAK)

rdt_rcv(rcvpkt) &&
 corrupt(rcvpkt)

Wait for
ACK or

NAK

Wait for
call from

below

rdt_send(data)

Λ	

rdt2.0 has a fatal flaw!

What happens if ACK/NAK
corrupted?

¨  sender doesn’t know what
happened at receiver!

¨  can’t just retransmit: possible
duplicate

Handling duplicates:
¨  sender retransmits current pkt if

ACK/NAK garbled

¨  sender adds sequence number to
each pkt

¨  receiver discards (doesn’t
deliver up) duplicate pkt

3-30

Transport Layer

Sender sends one packet,
then waits for receiver
response

stop and wait

rdt2.1: sender, handles garbled ACK/NAKs
3-31

Transport Layer

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

Wait for
ACK or
NAK 0 udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isNAK(rcvpkt))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

Wait for
 call 1 from

above

Wait for
ACK or
NAK 1

Λ	

Λ	

rdt2.1: receiver, handles garbled ACK/NAKs

Transport Layer

3-32

Wait for
0 from
below

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 not corrupt(rcvpkt) &&
 has_seq0(rcvpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Wait for
1 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq0(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 not corrupt(rcvpkt) &&
 has_seq1(rcvpkt)

rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt2.1: discussion

Sender:
¨  seq # added to pkt

¨  two seq. #’s (0,1) will
suffice. Why?

¨  must check if received
ACK/NAK corrupted

¨  twice as many states
¤  state must “remember”

whether “current” pkt has 0
or 1 seq. #

Receiver:
¨  must check if received

packet is duplicate
¤  state indicates whether 0 or 1

is expected pkt seq #

¨  note: receiver can not know
if its last ACK/NAK
received OK at sender

3-33

Transport Layer

rdt2.2: a NAK-free protocol

¨  same functionality as rdt2.1, using ACKs only
¨  instead of NAK, receiver sends ACK for last pkt received OK

¤  receiver must explicitly include seq # of pkt being ACKed

¨  duplicate ACK at sender results in same action as NAK:
retransmit current pkt

3-34

Transport Layer

rdt2.2: sender, receiver fragments

Transport Layer

3-35

Wait for
call 0 from

above

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_send(data)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
 isACK(rcvpkt,1))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

Wait for
ACK

0

sender FSM
fragment

Wait for
0 from
below

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
 && has_seq1(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(ACK1, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
 (corrupt(rcvpkt) ||
 has_seq1(rcvpkt))

udt_send(sndpkt)
receiver FSM

fragment

Λ	

rdt3.0: channels with errors and loss

New assumption: underlying
channel can also lose
packets (data or ACKs)
¤  checksum, seq. #, ACKs,

retransmissions will be of help,
but not enough

Approach: sender waits
“reasonable” amount of time
for ACK

¨  retransmits if no ACK received in
this time

¨  if pkt (or ACK) just delayed (not
lost):
¤  retransmission will be duplicate,

but use of seq. #’s already
handles this

¤  receiver must specify seq # of
pkt being ACKed

¨  requires countdown timer

3-36

Transport Layer

rdt3.0 sender

Transport Layer

3-37
sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

Wait
for

ACK0

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,1))

Wait for
call 1 from

above

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

rdt_send(data)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
isACK(rcvpkt,0))

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer
stop_timer

udt_send(sndpkt)
start_timer

timeout

udt_send(sndpkt)
start_timer

timeout

rdt_rcv(rcvpkt)

Wait for
call 0from

above

Wait
for

ACK1

Λ	

rdt_rcv(rcvpkt)

Λ	

Λ	

Λ	

rdt3.0 in action

Transport Layer

3-38

rdt3.0 in action

Transport Layer

3-39

rdt3.0: stop-and-wait operation

Transport Layer

3-40

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

Performance of rdt3.0

¨  rdt3.0 works, but performance stinks
¨  ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

3-41

Transport Layer

❍  Transmission delay, channel utilization, throughput ?

Performance of rdt3.0

¨  rdt3.0 works, but performance stinks
¨  ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

3-42

Transport Layer

❍  U sender: utilization – fraction of time sender busy sending

U
sender = .008

30.008
= 0.00027

microsec
onds

L / R
RTT + L / R

=

❍  1KB pkt every 30 msec -> 33kB/sec thruput over 1 Gbps link
❍  network protocol limits use of physical resources!

dsmicrosecon8
bps10
bits8000

9 ===
R
Ldtrans

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-be-

acknowledged pkts
¤  ?

¤  ?

3-43

Transport Layer

Pipelined protocols
Pipelining: sender allows multiple, “in-flight”, yet-to-be-

acknowledged pkts
¤  range of sequence numbers must be increased

¤  buffering at sender and/or receiver

¨  Two generic forms of pipelined protocols: go-Back-N, selective
repeat

3-44

Transport Layer

Pipelining: increased utilization

Transport Layer

3-45

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

U
sender = .024

30.008
= 0.0008

microsecon
ds

3 * L / R
RTT + L / R

=

Increase utilization
by a factor of 3!

Pipelining Protocols

Go-back-N: big picture:
¨  Sender can have up to N

unacked packets in pipeline
¨  Rcvr only sends cumulative

acks
¤  Doesn’t ack packet if there’s

a gap

¨  Sender has timer for oldest
unacked packet
¤  If timer expires, retransmit all

unacked packets

Selective Repeat: big pic
¨  Sender can have up to N

unacked packets in pipeline
¨  Rcvr acks individual packets
¨  Sender maintains timer for

each unacked packet
¤  When timer expires,

retransmit only unack packet

3-46

Transport Layer

Go-Back-N
Sender:
¨  k-bit seq # in pkt header
¨  “window” of up to N, consecutive unack’ed pkts allowed

3-47

Transport Layer

❒  ACK(n): ACKs all pkts up to, including seq # n - “cumulative ACK”
❍  may receive duplicate ACKs (see receiver)

❒  timer for each in-flight pkt
❒  timeout(n): retransmit pkt n and all higher seq # pkts in window

GBN: sender extended FSM

Transport Layer

3-48

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt
[nextseqnum-1])

timeout

rdt_send(data)
if (nextseqnum < base+N) {
 sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
 udt_send(sndpkt[nextseqnum])
 if (base == nextseqnum)
 start_timer
 nextseqnum++
 }
else
 refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)
 stop_timer
 else
 start_timer

rdt_rcv(rcvpkt) &&
 notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
 && corrupt(rcvpkt)

Λ	

GBN: receiver extended FSM

ACK-only: always send ACK for correctly-received pkt with
highest in-order seq #
¤  may generate duplicate ACKs

¤  need only remember expectedseqnum

¨  out-of-order pkt:
¤  discard (don’t buffer) -> no receiver buffering!
¤  Re-ACK pkt with highest in-order seq #

3-49

Transport Layer

Wait

udt_send(sndpkt)
default

 rdt_rcv(rcvpkt)
 && notcurrupt(rcvpkt)
 && hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =
 make_pkt(expectedseqnum,ACK,chksum)

Λ	

GBN in
action

Transport Layer

3-50

Selective Repeat

¨  receiver individually acknowledges all correctly received
pkts
¤  buffers pkts, as needed, for eventual in-order delivery to upper

layer

¨  sender only resends pkts for which ACK not received
¤  sender timer for each unACKed pkt

¨  sender window
¤  N consecutive seq #’s
¤  again limits seq #s of sent, unACKed pkts

3-51

Transport Layer

Selective repeat: sender, receiver windows
3-52

Selective repeat

data from above :
¨  if next available seq # in

window, send pkt

timeout(n):
¨  resend pkt n, restart timer

ACK(n) in [sendbase,sendbase+N]:

¨  mark pkt n as received

¨  if n smallest unACKed pkt,
advance window base to next
unACKed seq #

3-53

Transport Layer

sender
pkt n in [rcvbase, rcvbase+N-1]
❒  send ACK(n)
❒  out-of-order: buffer
❒  in-order: deliver (also

deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

pkt n in [rcvbase-N,rcvbase-1]
❒  ACK(n)
otherwise:
❒  ignore

receiver

Selective repeat in action

Transport Layer

3-54

Selective repeat:
 dilemma

Example:
¨  seq #’s: 0, 1, 2, 3

¨  window size=3

¨  receiver sees no difference
in two scenarios!

¨  incorrectly passes duplicate
data as new in (a)

Q: what relationship between
seq # size and window
size?

3-55

Transport Layer

Chapter 3 outline

¨  3.1 Transport-layer services
¨  3.2 Multiplexing and

demultiplexing

¨  3.3 Connectionless
transport: UDP

¨  3.4 Principles of reliable
data transfer

¨  3.5 Connection-oriented
transport: TCP
¤  segment structure

¤  reliable data transfer
¤  flow control

¤  connection management

¨  3.6 Principles of congestion
control

¨  3.7 TCP congestion control

3-56

Transport Layer

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

¨  full duplex data:
¤  bi-directional data flow in

same connection
¤  MSS: maximum segment size

¨  connection-oriented:
¤  handshaking (exchange of

control msgs) init’s sender,
receiver state before data
exchange

¨  flow controlled:
¤  sender will not overwhelm

receiver

¨  point-to-point:
¤  one sender, one receiver

¨  reliable, in-order byte steam:
¤  no “message boundaries”

¨  pipelined:
¤  TCP congestion and flow

control set window size

¨  send & receive buffers

3-57

Transport Layer

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

TCP segment structure

Transport Layer

3-58

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window

Urg data pnter checksum
F S R P A U head

len
not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

TCP seq. #’s and ACKs
Seq. #’s:

¤  byte stream “number”
of first byte in
segment’s data

ACKs:
¤  seq # of next byte

expected from other
side

¤  cumulative ACK

Q: how receiver handles out-
of-order segments
¤  A: TCP spec doesn’t

say, - up to implementor

3-59

Transport Layer

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types
‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of
‘C’, echoes

back ‘C’

time

simple telnet scenario

TCP Round Trip Time and Timeout

Q: how to set TCP timeout
value?

¨  longer than RTT
¤  but RTT varies

¨  too short: premature timeout
¤  unnecessary

retransmissions

¨  too long: slow reaction to
segment loss

Q: how to estimate RTT?
¨  SampleRTT: measured time from

segment transmission until ACK receipt
¤  ignore retransmissions

¨  SampleRTT will vary, want estimated
RTT “smoother”
¤  average several recent

measurements, not just current
SampleRTT

3-60

Transport Layer

TCP Round Trip Time and Timeout
3-61

Transport Layer

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTT

❒  Exponential weighted moving average
❒  influence of past sample decreases exponentially fast
❒  typical value: α = 0.125

Example RTT estimation:

Transport Layer

3-62 RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

TCP Round Trip Time and Timeout
Setting the timeout
¨  EstimtedRTT plus “safety margin”

¤  large variation in EstimatedRTT -> larger safety margin
¨  first estimate of how much SampleRTT deviates from EstimatedRTT:

3-63

Transport Layer

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-β)*DevRTT +
 β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

 Then set timeout interval:

Chapter 3 outline

¨  3.1 Transport-layer services
¨  3.2 Multiplexing and

demultiplexing

¨  3.3 Connectionless
transport: UDP

¨  3.4 Principles of reliable
data transfer

¨  3.5 Connection-oriented
transport: TCP
¤  segment structure

¤  reliable data transfer
¤  flow control

¤  connection management

¨  3.6 Principles of congestion
control

¨  3.7 TCP congestion control

3-64

Transport Layer

TCP reliable data transfer

¨  TCP creates rdt service on
top of IP’s unreliable
service

¨  Pipelined segments

¨  Cumulative acks

¨  TCP uses single
retransmission timer

¨  Retransmissions are
triggered by:
¤  timeout events

¤  duplicate acks

¨  Initially consider simplified
TCP sender:
¤  ignore duplicate acks
¤  ignore flow control, congestion

control

3-65

Transport Layer

TCP sender events:
data rcvd from app:
¨  Create segment with seq #

¨  seq # is byte-stream
number of first data byte
in segment

¨  start timer if not already
running (think of timer as
for oldest unacked
segment)

¨  expiration interval:
TimeOutInterval

timeout:
¨  retransmit segment that

caused timeout

¨  restart timer

 Ack rcvd:

¨  If acknowledges previously
unacked segments
¤  update what is known to be

acked
¤  start timer if there are

outstanding segments

3-66

Transport Layer

TCP
sender
(simplified)

3-67

Transport Layer

 NextSeqNum = InitialSeqNum
 SendBase = InitialSeqNum

 loop (forever) {
 switch(event)

 event: data received from application above
 create TCP segment with sequence number NextSeqNum
 if (timer currently not running)
 start timer
 pass segment to IP
 NextSeqNum = NextSeqNum + length(data)

 event: timer timeout
 retransmit not-yet-acknowledged segment with
 smallest sequence number
 start timer

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }

 } /* end of loop forever */

Comment:
•  SendBase-1: last
cumulatively
ack’ed byte
Example:
•  SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

TCP: retransmission scenarios

Transport Layer

3-68
Host A

Seq=100, 20 bytes data

time

premature timeout

Host B

Seq=92, 8 bytes data

Seq=92, 8 bytes data

Se
q=

92
 t

im
eo

ut

Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time
Se

q=
92

 t
im

eo
ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

TCP retransmission scenarios (more)

Transport Layer

3-69
Host A

Seq=92, 8 bytes data

ACK=100

loss

ti
m

eo
ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

TCP ACK generation [RFC 1122, RFC 2581]

Transport Layer

3-70

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

Fast Retransmit

¨  Time-out period often
relatively long:
¤  long delay before resending

lost packet

¨  Detect lost segments via
duplicate ACKs.
¤  Sender often sends many

segments back-to-back
¤  If segment is lost, there will

likely be many duplicate
ACKs.

¨  If sender receives 3 ACKs
for the same data, it
supposes that segment after
ACKed data was lost:
¤  fast retransmit: resend segment

before timer expires

3-71

Transport Layer

Transport Layer

3-72

Host A

ti
m

eo
ut

Host B

time

X

resend 2nd segment

Figure 3.37 Resending a segment after triple duplicate ACK

Fast retransmit algorithm:
3-73

Transport Layer

 event: ACK received, with ACK field value of y
 if (y > SendBase) {
 SendBase = y
 if (there are currently not-yet-acknowledged segments)
 start timer
 }
 else {
 increment count of dup ACKs received for y
 if (count of dup ACKs received for y = 3) {
 resend segment with sequence number y
 }

a duplicate ACK for
already ACKed segment

fast retransmit

Chapter 3 outline

¨  3.1 Transport-layer services
¨  3.2 Multiplexing and

demultiplexing

¨  3.3 Connectionless
transport: UDP

¨  3.4 Principles of reliable
data transfer

¨  3.5 Connection-oriented
transport: TCP
¤  segment structure

¤  reliable data transfer
¤  flow control

¤  connection management

¨  3.6 Principles of congestion
control

¨  3.7 TCP congestion control

3-74

Transport Layer

TCP Flow Control

¨  receive side of TCP
connection has a receive
buffer:

¨  speed-matching service:
matching the send rate to
the receiving app’s drain
rate

3-75

Transport Layer

❒  app process may be
slow at reading from
buffer

sender won’t overflow
receiver’s buffer by

transmitting too much,
 too fast

flow control

TCP Flow control: how it works

(Suppose TCP receiver discards
out-of-order segments)

¨  spare room in buffer
= RcvWindow

= RcvBuffer-[LastByteRcvd -
LastByteRead]

¨  Rcvr advertises spare room
by including value of
RcvWindow in segments

¨  Sender limits unACKed
data to RcvWindow
¤  guarantees receive buffer

doesn’t overflow

3-76

Transport Layer

Chapter 3 outline

¨  3.1 Transport-layer services
¨  3.2 Multiplexing and

demultiplexing

¨  3.3 Connectionless
transport: UDP

¨  3.4 Principles of reliable
data transfer

¨  3.5 Connection-oriented
transport: TCP
¤  segment structure

¤  reliable data transfer
¤  flow control

¤  connection management

¨  3.6 Principles of congestion
control

¨  3.7 TCP congestion control

3-77

Transport Layer

TCP Connection Management

Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

¨  initialize TCP variables:
¤  seq. #s
¤  buffers, flow control info (e.g.
RcvWindow)

¨  client: connection initiator
 Socket clientSocket = new

Socket("hostname","port

number");
¨  server: contacted by client
 Socket connectionSocket =

welcomeSocket.accept();

Three way handshake:

Step 1: client host sends TCP SYN
segment to server
¤  specifies initial seq #
¤  no data

Step 2: server host receives SYN,
replies with SYNACK segment

¤  server allocates buffers
¤  specifies server initial seq. #

Step 3: client receives SYNACK,
replies with ACK segment, which
may contain data

3-78

Transport Layer

TCP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system sends TCP
FIN control segment to server

Step 2: server receives FIN, replies
with ACK. Closes connection,
sends FIN.

3-79

Transport Layer

client

FIN

server

ACK

ACK

FIN

close

close

closed
ti

m
ed

 w
ai

t

TCP Connection Management (cont.)

Step 3: client receives FIN, replies
with ACK.

¤  Enters “timed wait” - will
respond with ACK to
received FINs

Step 4: server, receives ACK.
Connection closed.

Note: with small modification, can
handle simultaneous FINs.

3-80

Transport Layer

client

FIN

server

ACK

ACK

FIN

closing

closing

closed
ti

m
ed

 w
ai

t

closed

TCP Connection Management (cont)

Transport Layer

3-81

TCP client
lifecycle

TCP server
lifecycle

Chapter 3 outline

¨  3.1 Transport-layer services
¨  3.2 Multiplexing and

demultiplexing

¨  3.3 Connectionless
transport: UDP

¨  3.4 Principles of reliable
data transfer

¨  3.5 Connection-oriented
transport: TCP
¤  segment structure

¤  reliable data transfer
¤  flow control

¤  connection management

¨  3.6 Principles of congestion
control

¨  3.7 TCP congestion control

3-82

Transport Layer

Principles of Congestion Control

Congestion:
¨  informally: “too many sources sending too much data too

fast for network to handle”

¨  different from flow control!

¨  manifestations:

¤  lost packets (buffer overflow at routers)
¤  long delays (queueing in router buffers)

¨  a top-10 problem!

3-83

Transport Layer

Causes/costs of congestion: scenario 1

¨  two senders, two
receivers

¨  one router, infinite
buffers

¨  no retransmission

¨  large delays when
congested

¨  maximum
achievable
throughput

3-84

Transport Layer

unlimited shared
output link buffers

Host A
λin : original data

Host B

λout

Causes/costs of congestion: scenario 2

¨  one router, finite buffers
¨  sender retransmission of lost packet

3-85

Transport Layer

finite shared output
link buffers

Host A λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

Causes/costs of congestion: scenario 2

¨  always: (goodput)

¨  “perfect” retransmission only when loss:

¨  retransmission of delayed (not lost) packet makes larger (than perfect

case) for same

3-86

Transport Layer

λ	

in

λ	

out =

λ	

in

λ	

out >

λ	

in λ	

out

“costs” of congestion:
❒  more work (retrans) for given “goodput”
❒  unneeded retransmissions: link carries multiple copies of pkt

R/2

R/2
λin

λ o
ut

b.

R/2

R/2
λin

λ o
ut

a.

R/2

R/2
λin

λ o
ut

c.

R/4

R/3

Causes/costs of congestion: scenario 3

¨  four senders

¨  multihop paths

¨  timeout/retransmit

3-87

Transport Layer

λ	

in

Q: what happens as
and increase ? λ	

in

finite shared output
link buffers

Host A
λin : original data

Host B

λout

λ'in : original data, plus
retransmitted data

Causes/costs of congestion: scenario 3
3-88

Transport Layer

Another “cost” of congestion:
❒  when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

H
o
st
A

H
o
st
B

λ
o
u
t

Approaches towards congestion control

End-end congestion control:
¨  no explicit feedback from

network

¨  congestion inferred from end-
system observed loss, delay

¨  approach taken by TCP

Network-assisted congestion
control:

¨  routers provide feedback to end
systems
¤  single bit indicating

congestion (SNA, DECbit,
TCP/IP ECN, ATM)

¤  explicit rate sender should
send at

3-89

Transport Layer

Two broad approaches towards congestion control:

Case study: ATM ABR congestion control

ABR: available bit rate:
¨  “elastic service”

¨  if sender’s path
“underloaded”:
¤  sender should use available

bandwidth

¨  if sender’s path congested:
¤  sender throttled to minimum

guaranteed rate

RM (resource management) cells:
¨  sent by sender, interspersed with

data cells

¨  bits in RM cell set by switches
(“network-assisted”)
¤  NI bit: no increase in rate (mild

congestion)
¤  CI bit: congestion indication

¨  RM cells returned to sender by
receiver, with bits intact

3-90

Transport Layer

Case study: ATM ABR congestion control

¨  two-byte ER (explicit rate) field in RM cell
¤  congested switch may lower ER value in cell

¤  sender’ send rate thus maximum supportable rate on path

¨  EFCI bit in data cells: set to 1 in congested switch
¤  if data cell preceding RM cell has EFCI set, sender sets CI bit in

returned RM cell

3-91

Transport Layer

Chapter 3 outline

¨  3.1 Transport-layer services
¨  3.2 Multiplexing and

demultiplexing

¨  3.3 Connectionless
transport: UDP

¨  3.4 Principles of reliable
data transfer

¨  3.5 Connection-oriented
transport: TCP
¤  segment structure

¤  reliable data transfer
¤  flow control

¤  connection management

¨  3.6 Principles of congestion
control

¨  3.7 TCP congestion control

3-92

Transport Layer

TCP congestion control: additive increase,
multiplicative decrease

3-93

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

❒  Approach: increase transmission rate (window size),
probing for usable bandwidth, until loss occurs
❍  additive increase: increase CongWin by 1 MSS

every RTT until loss detected
❍ multiplicative decrease: cut CongWin in half after

loss
co

ng
es

tio
n

w
in

do
w

 s
iz

e

Saw tooth
behavior: probing

for bandwidth

TCP Congestion Control: details

¨  sender limits transmission:
 LastByteSent-LastByteAcked
 ≤ CongWin

¨  Roughly,

¨  CongWin is dynamic, function of
perceived network congestion

How does sender perceive
congestion?

¨  loss event = timeout or 3
duplicate acks

¨  TCP sender reduces rate
(CongWin) after loss
event

three mechanisms:
¤  AIMD
¤  slow start
¤  conservative after timeout

events

3-94

Transport Layer

rate =
CongWin

RTT
Bytes/sec

TCP Slow Start

¨  When connection begins,
CongWin = 1 MSS
¤  Example: MSS = 500 bytes &

RTT = 200 msec
¤  initial rate = 20 kbps

¨  available bandwidth may be
>> MSS/RTT
¤  desirable to quickly ramp up to

respectable rate

3-95

Transport Layer

❒  When connection begins,
increase rate
exponentially fast until
first loss event

TCP Slow Start (more)

¨  When connection begins,
increase rate exponentially
until first loss event:
¤  double CongWin every RTT
¤  done by incrementing
CongWin for every ACK
received

¨  Summary: initial rate is slow
but ramps up exponentially
fast

3-96

Transport Layer

Host A

one segment

RT
T

Host B

time

two segments

four segments

Refinement: inferring loss
¨  After 3 dup ACKs:

¤  CongWin is cut in half
¤  window then grows linearly

¨  But after timeout event:
¤  CongWin instead set to 1 MSS;
¤  window then grows exponentially
¤  to a threshold, then grows linearly

3-97

Transport Layer

q  3 dup ACKs indicates
network capable of
delivering some segments
q  timeout indicates a
“more alarming”
congestion scenario

Philosophy:

Refinement

Q: When should the
exponential increase
switch to linear?

A: When CongWin gets to
1/2 of its value before
timeout.

Implementation:
¨  Variable Threshold
¨  At loss event, Threshold is set to

1/2 of CongWin just before loss
event

3-98

Transport Layer

Summary: TCP Congestion Control

Transport Layer

3-99

¨  When CongWin is below Threshold, sender in slow-
start phase, window grows exponentially.

¨  When CongWin is above Threshold, sender is in
congestion-avoidance phase, window grows linearly.

¨  When a triple duplicate ACK occurs, Threshold set to
CongWin/2 and CongWin set to Threshold.

¨  When timeout occurs, Threshold set to CongWin/2
and CongWin is set to 1 MSS.

TCP sender congestion control

Transport Layer

3-100

State Event TCP Sender Action Commentary
Slow Start
(SS)

ACK receipt
for previously
unacked
data

CongWin = CongWin + MSS,
If (CongWin > Threshold)
 set state to “Congestion
Avoidance”

Resulting in a doubling of
CongWin every RTT

Congestion
Avoidance
(CA)

ACK receipt
for previously
unacked
data

CongWin = CongWin+MSS *
(MSS/CongWin)

Additive increase, resulting
in increase of CongWin by
1 MSS every RTT

SS or CA Loss event
detected by
triple
duplicate
ACK

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

Fast recovery,
implementing multiplicative
decrease. CongWin will not
drop below 1 MSS.

SS or CA Timeout Threshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

Enter slow start

SS or CA Duplicate
ACK

Increment duplicate ACK count
for segment being acked

CongWin and Threshold not
changed

TCP throughput

Transport Layer

3-101

¨  What’s the average throughout of TCP as a
function of window size and RTT?
¤  Ignore slow start

¨  Let W be the window size when loss occurs.
¨  When window is W, throughput is W/RTT
¨  Just after loss, window drops to W/2, throughput to

W/2RTT.
¨  Average throughout: .75 W/RTT

TCP Futures: TCP over “long, fat pipes”

Transport Layer

3-102

¨  Example: 1500 byte segments, 100ms RTT, want 10 Gbps
throughput

¨  Requires window size W = 83,333 in-flight segments

¨  Throughput in terms of loss rate:

¨  ➜	
 L = 2·∙10-10 Wow

¨  New versions of TCP for high-speed

LRTT
MSS!22.1

TCP Fairness
Fairness goal: if K TCP sessions share same bottleneck link of

bandwidth R, each should have average rate of R/K

3-103

Transport Layer

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

Why is TCP fair?
Two competing sessions:
¨  Additive increase gives slope of 1, as throughout increases

¨  multiplicative decrease decreases throughput proportionally

3-104

Transport Layer

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Fairness (more)

Fairness and UDP
¨  Multimedia apps often do

not use TCP
¤  do not want rate throttled by

congestion control

¨  Instead use UDP:
¤  pump audio/video at

constant rate, tolerate packet
loss

¨  Research area: TCP
friendly

Fairness and parallel TCP
connections

¨  nothing prevents app from
opening parallel connections
between 2 hosts.

¨  Web browsers do this
¨  Example: link of rate R

supporting 9 connections;
¤  new app asks for 1 TCP, gets rate

R/10
¤  new app asks for 11 TCPs, gets R/

2 !

3-105

Transport Layer

Chapter 3: Summary
¨  principles behind transport layer

services:
¤ multiplexing, demultiplexing
¤  reliable data transfer
¤  flow control
¤  congestion control

¨  instantiation and implementation in
the Internet
¤ UDP
¤  TCP

Next:
¨  leaving the network
“edge” (application,
transport layers)

¨  into the network “core”

3-106

Transport Layer

