
Linux Kernel and Android Development Class

Linux Kernel and Android
Development Class

Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Latest update: December 5, 2012.
Document updates and sources:
http://adeneo-embedded.com

Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 1/742

http://adeneo-embedded.com

Rights to copy

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded
License: Creative Commons Attribution - Share Alike 3.0
http://creativecommons.org/licenses/by-sa/3.0/legalcode

You are free:

I to copy, distribute, display, and perform the work

I to make derivative works

I to make commercial use of the work

Under the following conditions:

I Attribution. You must give the original author credit.

I Share Alike. If you alter, transform, or build upon this work, you may distribute
the resulting work only under a license identical to this one.

I For any reuse or distribution, you must make clear to others the license terms of
this work.

I Any of these conditions can be waived if you get permission from the copyright
holder.

Your fair use and other rights are in no way affected by the above.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 2/742

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Welcome!

I Audience: embedded software students

I Purpose of this course: development environment setup,
drivers and kernel development, image building

I Prerequisites: basic knowledge of Linux, good knowledge of C,
basic knowledge of OS

I Agenda
Course 1 : Linux kernel - Principles and deployment on
embedded platforms (2 hours)
Course 2 : Android - Principles and architecture (2 hours)
Course 3 : Linux - Driver development (2 hours)

I Targeted hardware platform : PandaBoard ES

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 3/742

Who is Adeneo Embedded?

I BSP and driver development

I Hardware Design and design reviews

I Systems optimization

I Embedded application development

I Support contract

I Training and Workshop

I Consulting and engineering services

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 4/742

PandaBoard ES

I Core Architecture: ARM

I Core Sub-Architecture:
Cortex-A9 dual-core

I OMAP4460

I kit: ES Board revision B1,
µSD card and Adaptor

I features: High-Speed USB
2.0 OTG Port, Stereo Audio
Out/In, Ethernet, HDMI,
DVI, Camera I/F

I clock max: 1.5 GHz

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 5/742

Linux Kernel Introduction

Linux Kernel
Introduction
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 6/742

Linux Kernel Introduction

Linux features

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 7/742

Linux kernel in the system

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 8/742

History

I The Linux kernel is one component of a system, which also
requires libraries and applications to provide features to end
users.

I The Linux kernel was created as a hobby in 1991 by a Finnish
student, Linus Torvalds.

I Linux quickly started to be used as the kernel for free software
operating systems

I Linus Torvalds has been able to create a large and dynamic
developer and user community around Linux.

I Nowadays, hundreds of people contribute to each kernel
release, individuals or companies big and small.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 9/742

Linux license

I The whole Linux sources are Free Software released under the
GNU General Public License version 2 (GPL v2).

I For the Linux kernel, this basically implies that:
I When you receive or buy a device with Linux on it, you should

receive the Linux sources, with the right to study, modify and
redistribute them.

I When you produce Linux based devices, you must release the
sources to the recipient, with the same rights, with no
restriction..

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 10/742

Linux kernel key features

I Portability and hardware
support. Runs on most
architectures.

I Scalability. Can run on
super computers as well as
on tiny devices (4 MB of
RAM is enough).

I Compliance to standards
and interoperability.

I Exhaustive networking
support.

I Security. It can’t hide its
flaws. Its code is reviewed
by many experts.

I Stability and reliability.

I Modularity. Can include
only what a system needs
even at run time.

I Easy to program. You can
learn from existing code.
Many useful resources on
the net.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 11/742

Supported hardware architectures

I See the arch/ directory in the kernel sources

I Minimum: 32 bit processors, with or without MMU, and gcc

support

I 32 bit architectures (arch/ subdirectories)
Examples: arm, avr32, blackfin, m68k, microblaze,

mips, score, sparc, um

I 64 bit architectures:
Examples: alpha, arm64, ia64, sparc64, tile

I 32/64 bit architectures
Examples: powerpc, x86, sh

I Find details in kernel sources: arch/<arch>/Kconfig,
arch/<arch>/README, or Documentation/<arch>/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 12/742

System calls

I The main interface between the kernel and userspace is the
set of system calls

I About 300 system calls that provide the main kernel services
I File and device operations, networking operations,

inter-process communication, process management, memory
mapping, timers, threads, synchronization primitives, etc.

I This interface is stable over time: only new system calls can
be added by the kernel developers

I This system call interface is wrapped by the C library, and
userspace applications usually never make a system call
directly but rather use the corresponding C library function

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 13/742

Virtual filesystems

I Linux makes system and kernel information available in
user-space through virtual filesystems.

I Virtual filesystems allow applications to see directories and
files that do not exist on any real storage: they are created on
the fly by the kernel

I The two most important virtual filesystems are
I proc, usually mounted on /proc:

Operating system related information (processes, memory
management parameters...)

I sysfs, usually mounted on /sys:
Representation of the system as a set of devices and buses.
Information about these devices.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 14/742

Linux Kernel Introduction

Linux versioning scheme and
development process

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 15/742

Until 2.6 (1)

I One stable major branch every 2 or 3 years
I Identified by an even middle number
I Examples: 1.0.x, 2.0.x, 2.2.x, 2.4.x

I One development branch to integrate new functionalities and
major changes

I Identified by an odd middle number
I Examples: 2.1.x, 2.3.x, 2.5.x
I After some time, a development version becomes the new base

version for the stable branch

I Minor releases once in while: 2.2.23, 2.5.12, etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 16/742

Until 2.6 (2)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 17/742

Changes since Linux 2.6 (1)

I Since 2.6.0, kernel developers have been able to introduce
lots of new features one by one on a steady pace, without
having to make major changes in existing subsystems.

I So far, there was no need to create a new development branch
(such as 2.7), which would massively break compatibility with
the stable branch.

I Thanks to this, more features are released to users at a
faster pace.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 18/742

Changes since Linux 2.6 (2)

Since 2.6.14, the kernel developers agreed on the following
development model:

I After the release of a 2.6.x version, a two-weeks merge
window opens, during which major additions are merged.

I The merge window is closed by the release of test version
2.6.(x+1)-rc1

I The bug fixing period opens, for 6 to 10 weeks.

I At regular intervals during the bug fixing period,
2.6.(x+1)-rcY test versions are released.

I When considered sufficiently stable, kernel 2.6.(x+1) is
released, and the process starts again.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 19/742

Merge and bug fixing windows

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 20/742

More stability for the kernel source tree

I Issue: bug and security fixes only released
for most recent stable kernel versions.

I Some people need to have a recent kernel,
but with long term support for security
updates.

I You could get long term support from a
commercial embedded Linux provider.

I You could reuse sources for the kernel
used in Ubuntu Long Term Support
releases (5 years of free security updates).

I The http://kernel.org front page
shows which versions will be supported for
some time (up to 2 or 3 years), and which
ones won’t be supported any more
(”EOL: End Of Life”)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 21/742

http://kernel.org

New 3.x branch

I From 2003 to 2011, the official kernel versions were named
2.6.x.

I Linux 3.0 was released in July 2011
I There is no change to the development model, only a change

to the numbering scheme
I Official kernel versions will be named 3.x (3.0, 3.1, 3.2,

etc.)
I Stabilized versions will be named 3.x.y (3.0.2, 3.4.3, etc.)
I It effectively only removes a digit compared to the previous

numbering scheme

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 22/742

What’s new in each Linux release?

I The official list of changes for each Linux release is just a
huge list of individual patches!
commit aa6e52a35d388e730f4df0ec2ec48294590cc459
Author: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Date: Wed Jul 13 11:29:17 2011 +0200

at91: at91-ohci: support overcurrent notification

Several USB power switches (AIC1526 or MIC2026) have a digital output
that is used to notify that an overcurrent situation is taking
place. This digital outputs are typically connected to GPIO inputs of
the processor and can be used to be notified of those overcurrent
situations.

Therefore, we add a new overcurrent_pin[] array in the at91_usbh_data
structure so that boards can tell the AT91 OHCI driver which pins are
used for the overcurrent notification, and an overcurrent_supported
boolean to tell the driver whether overcurrent is supported or not.

The code has been largely borrowed from ohci-da8xx.c and
ohci-s3c2410.c.

Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
Signed-off-by: Nicolas Ferre <nicolas.ferre@atmel.com>

I Very difficult to find out the key changes and to get the global
picture out of individual changes.

I Fortunately, there are some useful resources available
I http://wiki.kernelnewbies.org/LinuxChanges
I http://lwn.net
I http://linuxfr.org, for French readers

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 23/742

http://wiki.kernelnewbies.org/LinuxChanges
http://lwn.net
http://linuxfr.org

Embedded Linux Kernel Usage

Embedded Linux
Kernel Usage
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 24/742

Embedded Linux Kernel Usage

Linux kernel sources

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 25/742

Location of kernel sources

I The official version of the Linux kernel, as released by Linus
Torvalds is available at http://www.kernel.org

I This version follows the well-defined development model of the
kernel

I However, it may not contain the latest development from a
specific area, due to the organization of the development
model and because features in development might not be
ready for mainline inclusion

I Many kernel sub-communities maintain their own kernel, with
usually newer but less stable features

I Architecture communities (ARM, MIPS, PowerPC, etc.),
device drivers communities (I2C, SPI, USB, PCI, network,
etc.), other communities (real-time, etc.)

I They generally don’t release official versions, only development
trees are available

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 26/742

http://www.kernel.org

Linux kernel size (1)

I Linux 3.1 sources:
Raw size: 434 MB (39,400 files, approx 14,800,000 lines)
gzip compressed tar archive: 93 MB
bzip2 compressed tar archive: 74 MB (better)
xz compressed tar archive: 62 MB (best)

I Minimum Linux 2.6.29 compiled kernel size with
CONFIG_EMBEDDED, for a kernel that boots a QEMU PC (IDE
hard drive, ext2 filesystem, ELF executable support):
532 KB (compressed), 1325 KB (raw)

I Why are these sources so big?
Because they include thousands of device drivers, many
network protocols, support many architectures and
filesystems...

I The Linux core (scheduler, memory management...) is pretty
small!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 27/742

Linux kernel size (2)

As of kernel version 3.2.

I drivers/: 53.65%

I arch/: 20.78%

I fs/: 6.88%

I sound/: 5.04%

I net/: 4.33%

I include/: 3.80%

I firmware/: 1.46%

I kernel/: 1.10%

I tools/: 0.56%

I mm/: 0.53%

I scripts/: 0.44%

I security/: 0.40%

I crypto/: 0.38%

I lib/: 0.30%

I block/: 0.13%

I ipc/: 0.04%

I virt/: 0.03%

I init/: 0.03%

I samples/: 0.02%

I usr/: 0%

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 28/742

Getting Linux sources

I Full tarballs
I Contain the complete kernel sources: long to download and

uncompress, but must be done at least once
I Example:

http://www.kernel.org/pub/linux/kernel/v3.0/linux-

3.1.3.tar.xz

I Extract command:
tar Jxf linux-3.1.3.tar.xz

I Incremental patches between versions
I It assumes you already have a base version and you apply the

correct patches in the right order. Quick to download and
apply

I Examples:
http://www.kernel.org/pub/linux/kernel/v3.0/patch-3.1.xz

(3.0 to 3.1)
http://www.kernel.org/pub/linux/kernel/v3.0/patch-3.1.3.xz

(3.1 to 3.1.3)

I All previous kernel versions are available in
http://kernel.org/pub/linux/kernel/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 29/742

http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.1.3.tar.xz
http://www.kernel.org/pub/linux/kernel/v3.0/linux-3.1.3.tar.xz
http://www.kernel.org/pub/linux/kernel/v3.0/patch-3.1.xz
http://www.kernel.org/pub/linux/kernel/v3.0/patch-3.1.3.xz
http://kernel.org/pub/linux/kernel/

Patch

I A patch is the difference between two source trees
I Computed with the diff tool, or with more elaborate version

control systems

I They are very common in the open-source community

I Excerpt from a patch:

diff -Nru a/Makefile b/Makefile

--- a/Makefile 2005-03-04 09:27:15 -08:00

+++ b/Makefile 2005-03-04 09:27:15 -08:00

@@ -1,7 +1,7 @@

VERSION = 2

PATCHLEVEL = 6

SUBLEVEL = 11

-EXTRAVERSION =

+EXTRAVERSION = .1

NAME=Woozy Numbat

DOCUMENTATION

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 30/742

Contents of a patch

I One section per modified file, starting with a header
diff -Nru a/Makefile b/Makefile

--- a/Makefile 2005-03-04 09:27:15 -08:00

+++ b/Makefile 2005-03-04 09:27:15 -08:00

I One sub-section per modified part of the file, starting with
header with the affected line numbers
@@ -1,7 +1,7 @@

I Three lines of context before the change
VERSION = 2

PATCHLEVEL = 6

SUBLEVEL = 11

I The change itself
-EXTRAVERSION =

+EXTRAVERSION = .1

I Three lines of context after the change
NAME=Woozy Numbat

DOCUMENTATION

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 31/742

Using the patch command

The patch command:

I Takes the patch contents on its standard input

I Applies the modifications described by the patch into the
current directory

patch usage examples:

I patch -p<n> < diff_file

I cat diff_file | patch -p<n>

I xzcat diff_file.xz | patch -p<n>

I bzcat diff_file.bz2 | patch -p<n>

I zcat diff_file.gz | patch -p<n>

I Notes:
I n: number of directory levels to skip in the file paths
I You can reverse apply a patch with the -R option
I You can test a patch with --dry-run option

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 32/742

Applying a Linux patch

Linux patches...

I Always applied to the x.y.<z-1> version
Can be downloaded in gzip, bzip2 or xz (much smaller)
compressed files.

I Always produced for n=1
(that’s what everybody does... do it too!)

I Need to run the patch command inside the kernel source
directory

I Linux patch command line example:

cd linux-3.0

xzcat ../patch-3.1.xz | patch -p1

xzcat ../patch-3.1.3.xz | patch -p1

cd ..; mv linux-3.0 linux-3.1.3

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 33/742

Kernel Source Code

Kernel Source
Code
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 34/742

Kernel Source Code

Linux Code and Device Drivers

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 35/742

Supported kernel version

I The APIs covered in these training slides should be compliant
with Linux 3.6.

I We may also mention features in more recent kernels.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 36/742

Programming language

I Implemented in C like all Unix systems. (C was created to
implement the first Unix systems)

I A little Assembly is used too:
I CPU and machine initialization, exceptions
I Critical library routines.

I No C++ used, see http://www.tux.org/lkml/#s15-3

I All the code compiled with gcc, the GNU C Compiler
I Many gcc specific extensions used in the kernel code, any

ANSI C compiler will not compile the kernel
I A few alternate compilers are supported (Intel and Marvell)
I See http://gcc.gnu.org/onlinedocs/gcc-4.6.1/gcc/C-

Extensions.html

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 37/742

http://www.tux.org/lkml/#s15-3
http://gcc.gnu.org/onlinedocs/gcc-4.6.1/gcc/C-Extensions.html
http://gcc.gnu.org/onlinedocs/gcc-4.6.1/gcc/C-Extensions.html

No C library

I The kernel has to be standalone and can’t use user-space
code.

I Userspace is implemented on top of kernel services, not the
opposite.

I Kernel code has to supply its own library implementations
(string utilities, cryptography, uncompression ...)

I So, you can’t use standard C library functions in kernel code.
(printf(), memset(), malloc(),...).

I Fortunately, the kernel provides similar C functions for your
convenience, like printk(), memset(), kmalloc(), ...

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 38/742

Portability

I The Linux kernel code is designed to be portable

I All code outside arch/ should be portable
I To this aim, the kernel provides macros and functions to

abstract the architecture specific details
I Endianness

I cpu_to_be32
I cpu_to_le32
I be32_to_cpu
I le32_to_cpu

I I/O memory access
I Memory barriers to provide ordering guarantees if needed
I DMA API to flush and invalidate caches if needed

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 39/742

No floating point computation

I Never use floating point numbers in kernel code. Your code
may be run on a processor without a floating point unit (like
on ARM).

I Don’t be confused with floating point related configuration
options

I They are related to the emulation of floating point operation
performed by the user space applications, triggering an
exception into the kernel.

I Using soft-float, i.e. emulation in user-space, is however
recommended for performance reasons.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 40/742

No stable Linux internal API 1/3

I The internal kernel API to implement kernel code can undergo
changes between two stable 2.6.x or 3.x releases. A
stand-alone driver compiled for a given version may no longer
compile or work on a more recent one. See
Documentation/stable_api_nonsense.txt in kernel
sources for reasons why.

I Of course, the external API must not change (system calls,
/proc, /sys), as it could break existing programs. New
features can be added, but kernel developers try to keep
backward compatibility with earlier versions, at least for 1 or
several years.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 41/742

http://free-electrons.com/kerneldoc/latest/stable_api_nonsense.txt

No stable Linux internal API 2/3

I Whenever a developer changes an internal API, (s)he also has
to update all kernel code which uses it. Nothing broken!

I Works great for code in the mainline kernel tree.

I Difficult to keep in line for out of tree or closed-source drivers!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 42/742

No stable Linux internal API 3/3

I USB example
I Linux has updated its USB internal API at least 3 times (fixes,

security issues, support for high-speed devices) and has now
the fastest USB bus speeds (compared to other systems)

I Windows XP also had to rewrite its USB stack 3 times. But,
because of closed-source, binary drivers that can’t be updated,
they had to keep backward compatibility with all earlier
implementation. This is very costly (development, security,
stability, performance).

I See “Myths, Lies, and Truths about the Linux Kernel”, by
Greg K.H., for details about the kernel development process:
http://kroah.com/log/linux/ols_2006_keynote.html

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 43/742

http://kroah.com/log/linux/ols_2006_keynote.html

Kernel memory constraints

I No memory protection

I Accessing illegal memory locations result in (often fatal)
kernel oopses.

I Fixed size stack (8 or 4 KB). Unlike in userspace, there’s no
way to make it grow.

I Kernel memory can’t be swapped out (for the same reasons).

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 44/742

Linux kernel licensing constraints

I The Linux kernel is licensed under the GNU General Public
License version 2

I This license gives you the right to use, study, modify and share
the software freely

I However, when the software is redistributed, either modified
or unmodified, the GPL requires that you redistribute the
software under the same license, with the source code

I If modifications are made to the Linux kernel (for example to
adapt it to your hardware), it is a derivative work of the kernel,
and therefore must be released under GPLv2

I The validity of the GPL on this point has already been verified
in courts

I However, you’re only required to do so
I At the time the device starts to be distributed
I To your customers, not to the entire world

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 45/742

Proprietary code and the kernel

I It is illegal to distribute a binary kernel that includes statically
compiled proprietary drivers

I The kernel modules are a gray area: are they derived works of
the kernel or not?

I The general opinion of the kernel community is that
proprietary drivers are bad: http://j.mp/fbyuuH

I From a legal point of view, each driver is probably a different
case

I Is it really useful to keep your drivers secret?

I There are some examples of proprietary drivers, like the Nvidia
graphics drivers

I They use a wrapper between the driver and the kernel
I Unclear whether it makes it legal or not

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 46/742

http://j.mp/fbyuuH

Advantages of GPL drivers 1/2

I You don’t have to write your driver from scratch. You can
reuse code from similar free software drivers.

I You get free community contributions, support, code review
and testing. Proprietary drivers (even with sources) don’t get
any.

I Your drivers can be freely shipped by others (mainly by
distributions).

I Closed source drivers often support a given kernel version. A
system with closed source drivers from 2 different sources is
unmanageable.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 47/742

Advantages of GPL drivers 2/2

I Users and the community get a positive image of your
company. Makes it easier to hire talented developers.

I You don’t have to supply binary driver releases for each kernel
version and patch version (closed source drivers).

I Drivers have all privileges. You need the sources to make sure
that a driver is not a security risk.

I Your drivers can be statically compiled into the kernel (useful
to have a kernel image with all drivers needed at boot time)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 48/742

Advantages of in-tree kernel drivers

I Once your sources are accepted in the mainline tree, they are
maintained by people making changes.

I Cost-free maintenance, security fixes and improvements.

I Easy access to your sources by users.

I Many more people reviewing your code.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 49/742

Userspace device drivers 1/2

I Possible to implement device drivers in user-space!

I Such drivers just need access to the devices through
minimum, generic kernel drivers.

I Examples
I Printer and scanner drivers (on top of generic parallel port or

USB drivers)
I X drivers: low level kernel drivers + user space X drivers.
I Userspace drivers based on UIO. See

Documentation/DocBook/uio-howto in the kernel
documentation for details about UIO and the Using UIO on an
Embedded platform talk at ELC 2008 (http://j.mp/tBzayM)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 50/742

http://free-electrons.com/kerneldoc/latest/DocBook/uio-howto
http://j.mp/tBzayM

Userspace device drivers 2/2

I Advantages
I No need for kernel coding skills. Easier to reuse code between

devices.
I Drivers can be written in any language, even Perl!
I Drivers can be kept proprietary.
I Driver code can be killed and debugged. Cannot crash the

kernel.
I Can be swapped out (kernel code cannot be).
I Can use floating-point computation.
I Less in-kernel complexity.

I Drawbacks
I Less straightforward to handle interrupts.
I Increased latency vs. kernel code.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 51/742

Kernel Source Code

Linux sources

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 52/742

Linux sources structure 1/4

I arch/<architecture>
I Architecture specific code

I arch/<architecture>/include/asm
I Architecture and machine dependent headers

I arch/<architecture>/mach-<machine>
I Machine/board specific code

I block
I Block layer core

I COPYING
I Linux copying conditions (GNU GPL)

I CREDITS
I Linux main contributors

I crypto/
I Cryptographic libraries

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 53/742

Linux sources structure 2/4

I Documentation/
I Kernel documentation. Don’t miss it!

I drivers/
I All device drivers except sound ones (usb, pci...)

I fs/
I Filesystems (fs/ext3/, etc.)

I include/
I Kernel headers

I include/linux
I Linux kernel core headers

I init/
I Linux initialization (including main.c)

I ipc/
I Code used for process communication

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 54/742

Linux sources structure 3/4

I Kbuild
I Part of the kernel build system

I kernel/
I Linux kernel core (very small!)

I lib/
I Misc library routines (zlib, crc32...)

I MAINTAINERS
I Maintainers of each kernel part. Very useful!

I Makefile
I Top Linux Makefile (sets arch and version)

I mm/
I Memory management code (small too!)

I net/
I Network support code (not drivers)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 55/742

Linux sources structure 4/4

I README
I Overview and building instructions

I REPORTING-BUGS
I Bug report instructions

I samples/
I Sample code (markers, kprobes, kobjects...)

I scripts/
I Scripts for internal or external use

I security/
I Security model implementations (SELinux...)

I sound/
I Sound support code and drivers

I usr/
I Code to generate an initramfs cpio archive.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 56/742

Accessing development sources 1/2

I Useful if you are involved in kernel development or if you
found a bug in the source code.

I Kernel development sources are now managed with Git:
http://git-scm.com/

I You can browse Linus’ Git tree (if you just need to check a
few files): http://git.kernel.org/?p=linux/kernel/

git/torvalds/linux.git;a=tree (http://j.mp/QaOrzP)
I You can also directly use Git on your workstation

I Debian / Ubuntu: install the git package

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 57/742

http://git-scm.com/
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=tree
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=tree
http://j.mp/QaOrzP

Accessing development sources 2/2

I Choose a Git development tree on http://git.kernel.org/

I Get a local copy (“clone”) of this tree.
I git clone git://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git

I Update your copy whenever needed: git pull

I More details in our chapter about Git

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 58/742

http://git.kernel.org/

Kernel Source Code

Kernel source management tools

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 59/742

Cscope

I http://cscope.sourceforge.net/
I Tool to browse source code (mainly C, but also C++ or Java)
I Supports huge projects like the Linux kernel. Takes less than 1

min. to index Linux 2.6.17 sources (fast!)
I Can be used from editors like vim and emacs.
I In Linux kernel sources, run it with: cscope -Rk (see man

cscope for details)
I KScope: graphical front-end (kscope package in Ubuntu

12.04 and later)
I Allows searching for a symbol, a definition, functions, strings,

files, etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 60/742

http://cscope.sourceforge.net/

Cscope screenshot

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 61/742

LXR: Linux Cross Reference

I http://sourceforge.net/projects/lxr

I Generic source indexing tool and code browser
I Web server based, very easy and fast to use
I Very easy to find the declaration, implementation or usage of

symbols
I Supports C and C++
I Supports huge code projects such as the Linux kernel (431 MB

of source code in version 3.0).
I Takes a little time and patience to setup (configuration,

indexing, web server configuration)
I You don’t need to set up LXR by yourself. Use our

http://lxr.free-electrons.com server!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 62/742

http://sourceforge.net/projects/lxr
http://lxr.free-electrons.com

LXR screenshot

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 63/742

Kernel Source Code

Kernel configuration

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 64/742

Kernel configuration and build system

I The kernel configuration and build system is based on
multiple Makefiles

I One only interacts with the main Makefile, present at the
top directory of the kernel source tree

I Interaction takes place
I using the make tool, which parses the Makefile
I through various targets, defining which action should be done

(configuration, compilation, installation, etc.). Run
make help to see all available targets.

I Example
I cd linux-3.6.x/
I make <target>

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 65/742

Kernel configuration (1)

I The kernel contains thousands of device drivers, filesystem
drivers, network protocols and other configurable items

I Thousands of options are available, that are used to
selectively compile parts of the kernel source code

I The kernel configuration is the process of defining the set of
options with which you want your kernel to be compiled

I The set of options depends
I On your hardware (for device drivers, etc.)
I On the capabilities you would like to give to your kernel

(network capabilities, filesystems, real-time, etc.)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 66/742

Kernel configuration (2)

I The configuration is stored in the .config file at the root of
kernel sources

I Simple text file, key=value style

I As options have dependencies, typically never edited by hand,
but through graphical or text interfaces:

I make xconfig, make gconfig (graphical)
I make menuconfig, make nconfig (text)
I You can switch from one to another, they all load/save the

same .config file, and show the same set of options

I To modify a kernel in a GNU/Linux distribution: the
configuration files are usually released in /boot/, together
with kernel images: /boot/config-3.2.0-31-generic

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 67/742

Kernel or module?

I The kernel image is a single file, resulting from the linking
of all object files that correspond to features enabled in the
configuration

I This is the file that gets loaded in memory by the bootloader
I All included features are therefore available as soon as the

kernel starts, at a time where no filesystem exists

I Some features (device drivers, filesystems, etc.) can however
be compiled as modules

I Those are plugins that can be loaded/unloaded dynamically to
add/remove features to the kernel

I Each module is stored as a separate file in the filesystem,
and therefore access to a filesystem is mandatory to use
modules

I This is not possible in the early boot procedure of the kernel,
because no filesystem is available

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 68/742

Kernel option types

I There are different types of options
I bool options, they are either

I true (to include the feature in the kernel) or
I false (to exclude the feature from the kernel)

I tristate options, they are either
I true (to include the feature in the kernel image) or
I module (to include the feature as a kernel module) or
I false (to exclude the feature)

I int options, to specify integer values
I string options, to specify string values

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 69/742

Kernel option dependencies

I There are dependencies between kernel options

I For example, enabling a network driver requires the network
stack to be enabled

I Two types of dependencies
I depends on dependencies. In this case, option A that depends

on option B is not visible until option B is enabled
I select dependencies. In this case, with option A depending

on option B, when option A is enabled, option B is
automatically enabled

I make xconfig allows to see all options, even those that
cannot be selected because of missing dependencies. In this
case, they are displayed in gray

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 70/742

make xconfig

make xconfig

I The most common graphical interface to configure the kernel.

I Make sure you read
help -> introduction: useful options!

I File browser: easier to load configuration files

I Search interface to look for parameters

I Required Debian / Ubuntu packages: libqt4-dev g++

(libqt3-mt-dev for older kernel releases)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 71/742

make xconfig screenshot

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 72/742

make xconfig search interface

Looks for a keyword in the parameter name. Allows to select or
unselect found parameters.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 73/742

Kernel configuration options

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 74/742

Corresponding .config file excerpt

Options are grouped by sections and are prefixed with CONFIG_.

#

CD-ROM/DVD Filesystems

#

CONFIG_ISO9660_FS=m

CONFIG_JOLIET=y

CONFIG_ZISOFS=y

CONFIG_UDF_FS=y

CONFIG_UDF_NLS=y

#

DOS/FAT/NT Filesystems

#

CONFIG_MSDOS_FS is not set

CONFIG_VFAT_FS is not set

CONFIG_NTFS_FS=m

CONFIG_NTFS_DEBUG is not set

CONFIG_NTFS_RW=y

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 75/742

make gconfig

make gconfig

I GTK based graphical
configuration interface.
Functionality similar to that
of make xconfig.

I Just lacking a search
functionality.

I Required Debian packages:
libglade2-dev

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 76/742

make menuconfig

make menuconfig

I Useful when no graphics are
available. Pretty convenient
too!

I Same interface found in
other tools: BusyBox,
Buildroot...

I Required Debian packages:
libncurses-dev

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 77/742

make nconfig

make nconfig

I A newer, similar text
interface

I More user friendly (for
example, easier to access
help information).

I Required Debian packages:
libncurses-dev

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 78/742

make oldconfig

make oldconfig

I Needed very often!

I Useful to upgrade a .config file from an earlier kernel release

I Issues warnings for configuration parameters that no longer
exist in the new kernel.

I Asks for values for new parameters

If you edit a .config file by hand, it’s strongly recommended to
run make oldconfig afterwards!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 79/742

make allnoconfig

make allnoconfig

I Only sets strongly recommended settings to y.

I Sets all other settings to n.

I Very useful in embedded systems to select only the minimum
required set of features and drivers.

I Much more convenient than unselecting hundreds of features
one by one!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 80/742

Undoing configuration changes

A frequent problem:

I After changing several kernel configuration settings, your
kernel no longer works.

I If you don’t remember all the changes you made, you can get
back to your previous configuration:
$ cp .config.old .config

I All the configuration interfaces of the kernel (xconfig,
menuconfig, allnoconfig...) keep this .config.old

backup copy.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 81/742

Configuration per architecture

I The set of configuration options is architecture dependent
I Some configuration options are very architecture-specific
I Most of the configuration options (global kernel options,

network subsystem, filesystems, most of the device drivers) are
visible in all architectures.

I By default, the kernel build system assumes that the kernel is
being built for the host architecture, i.e. native compilation

I The architecture is not defined inside the configuration, but at
a higher level

I We will see later how to override this behaviour, to allow the
configuration of kernels for a different architecture

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 82/742

Overview of kernel options (1)

I General setup
I Local version - append to kernel release allows to concatenate

an arbitrary string to the kernel version that a user can get
using uname -r. Very useful for support!

I Support for swap, can usually be disabled on most embedded
devices

I Configure standard kernel features (expert users) allows to
remove features from the kernel to reduce its size. Powerful,
but use with care!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 83/742

Overview of kernel options (2)

I Loadable module support
I Allows to enable or completely disable module support. If your

system doesn’t need kernel modules, best to disable since it
saves a significant amount of space and memory

I Enable the block layer
I If CONFIG_EXPERT is enabled, the block layer can be

completely removed. Embedded systems using only flash
storage can safely disable the block layer

I Processor type and features (x86) or System type (ARM) or
CPU selection (MIPS)

I Allows to select the CPU or machine for which the kernel must
be compiled

I On x86, only optimization-related, on other architectures very
important since there’s no compatibility

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 84/742

Overview of kernel options (3)

I Kernel features
I Tickless system, which allows to disable the regular timer tick

and use on-demand ticks instead. Improves power savings
I High resolution timer support. By default, the resolution of

timer is the tick resolution. With high resolution timers, the
resolution is as precise as the hardware can give

I Preemptible kernel enables the preemption inside the kernel
code (the userspace code is always preemptible). See our
real-time presentation for details

I Power management
I Global power management option needed for all power

management related features
I Suspend to RAM, CPU frequency scaling, CPU idle control,

suspend to disk

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 85/742

Overview of kernel options (4)

I Networking support
I The network stack
I Networking options

I Unix sockets, needed for a form of inter-process
communication

I TCP/IP protocol with options for multicast, routing,
tunneling, Ipsec, Ipv6, congestion algorithms, etc.

I Other protocols such as DCCP, SCTP, TIPC, ATM
I Ethernet bridging, QoS, etc.

I Support for other types of network
I CAN bus, Infrared, Bluetooth, Wireless stack, WiMax stack,

etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 86/742

Overview of kernel options (5)

I Device drivers
I MTD is the subsystem for flash (NOR, NAND, OneNand,

battery-backed memory, etc.)
I Parallel port support
I Block devices, a few misc block drivers such as loopback,

NBD, etc.
I ATA/ATAPI, support for IDE disk, CD-ROM and tapes. A

new stack exists
I SCSI

I The SCSI core, needed not only for SCSI devices but also for
USB mass storage devices, SATA and PATA hard drives, etc.

I SCSI controller drivers

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 87/742

Overview of kernel options (6)

I Device drivers (cont)
I SATA and PATA, the new stack for hard disks, relies on SCSI
I RAID and LVM, to aggregate hard drivers and do replication
I Network device support, with the network controller drivers.

Ethernet, Wireless but also PPP
I Input device support, for all types of input devices: keyboards,

mice, joysticks, touchscreens, tablets, etc.
I Character devices, contains various device drivers, amongst

them
I serial port controller drivers
I PTY driver, needed for things like SSH or telnet

I I2C, SPI, 1-wire, support for the popular embedded buses
I Hardware monitoring support, infrastructure and drivers for

thermal sensors

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 88/742

Overview of kernel options (7)

I Device drivers (cont)
I Watchdog support
I Multifunction drivers are drivers that do not fit in any other

category because the device offers multiple functionality at the
same time

I Multimedia support, contains the V4L and DVB subsystems,
for video capture, webcams, AM/FM cards, DVB adapters

I Graphics support, infrastructure and drivers for framebuffers
I Sound card support, the OSS and ALSA sound infrastructures

and the corresponding drivers
I HID devices, support for the devices that conform to the HID

specification (Human Input Devices)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 89/742

Overview of kernel options (8)

I Device drivers (cont)
I USB support

I Infrastructure
I Host controller drivers
I Device drivers, for devices connected to the embedded system
I Gadget controller drivers
I Gadget drivers, to let the embedded system act as a

mass-storage device, a serial port or an Ethernet adapter

I MMC/SD/SDIO support
I LED support
I Real Time Clock drivers
I Voltage and current regulators
I Staging drivers, crappy drivers being cleaned up

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 90/742

Overview of kernel options (9)

I For some categories of devices the driver is not implemented
inside the kernel

I Printers
I Scanners
I Graphics drivers used by X.org
I Some USB devices

I For these devices, the kernel only provides a mechanism to
access the hardware, the driver is implemented in userspace

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 91/742

Overview of kernel options (10)

I File systems
I The common Linux filesystems for block devices: ext2, ext3,

ext4
I Less common filesystems: XFS, JFS, ReiserFS, GFS2, OCFS2,

Btrfs
I CD-ROM filesystems: ISO9660, UDF
I DOS/Windows filesystems: FAT and NTFS
I Pseudo filesystems: proc and sysfs
I Miscellaneous filesystems, with amongst other flash filesystems

such as JFFS2, UBIFS, SquashFS, cramfs
I Network filesystems, with mainly NFS and SMB/CIFS

I Kernel hacking
I Debugging features useful for kernel developers

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 92/742

Kernel Source Code

Compiling and installing the kernel
for the host system

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 93/742

Kernel compilation

I make
I in the main kernel source directory
I Remember to run make -j 4 if you have multiple CPU cores

to speed up the compilation process
I No need to run as root!

I Generates
I vmlinux, the raw uncompressed kernel image, at the ELF

format, useful for debugging purposes, but cannot be booted
I arch/<arch>/boot/*Image, the final, usually compressed,

kernel image that can be booted
I bzImage for x86, zImage for ARM, vmImage.gz for Blackfin,

etc.

I All kernel modules, spread over the kernel source tree, as .ko

files.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 94/742

Kernel installation

I make install
I Does the installation for the host system by default, so needs

to be run as root. Generally not used when compiling for an
embedded system, and it installs files on the development
workstation.

I Installs
I /boot/vmlinuz-<version>

Compressed kernel image. Same as the one in
arch/<arch>/boot

I /boot/System.map-<version>

Stores kernel symbol addresses
I /boot/config-<version>

Kernel configuration for this version

I Typically re-runs the bootloader configuration utility to take
the new kernel into account.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 95/742

Module installation

I make modules_install
I Does the installation for the host system by default, so needs

to be run as root

I Installs all modules in /lib/modules/<version>/
I kernel/

Module .ko (Kernel Object) files, in the same directory
structure as in the sources.

I modules.alias

Module aliases for module loading utilities. Example line:
alias sound-service-?-0 snd_mixer_oss

I modules.dep

Module dependencies
I modules.symbols

Tells which module a given symbol belongs to.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 96/742

Kernel cleanup targets

I Clean-up generated files (to force
re-compilation):
make clean

I Remove all generated files. Needed when
switching from one architecture to another.
Caution: it also removes your .config file!
make mrproper

I Also remove editor backup and patch reject files
(mainly to generate patches):
make distclean

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 97/742

Kernel Source Code

Cross-compiling the kernel

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 98/742

Cross-compiling the kernel

When you compile a Linux kernel for another CPU architecture

I Much faster than compiling natively, when the target system
is much slower than your GNU/Linux workstation.

I Much easier as development tools for your GNU/Linux
workstation are much easier to find.

I To make the difference with a native compiler, cross-compiler
executables are prefixed by the name of the target system,
architecture and sometimes library. Examples:
mips-linux-gcc, the prefix is mips-linux-

arm-linux-gnueabi-gcc, the prefix is arm-linux-gnueabi-

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 99/742

Specifying cross-compilation (1)

The CPU architecture and cross-compiler prefix are defined through
the ARCH and CROSS_COMPILE variables in the toplevel Makefile.

I ARCH is the name of the architecture. It is defined by the
name of the subdirectory in arch/ in the kernel sources

I Example: arm if you want to compile a kernel for the arm

architecture.

I CROSS_COMPILE is the prefix of the cross compilation tools
I Example: arm-linux- if your compiler is arm-linux-gcc

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 100/742

Specifying cross-compilation (2)

Two solutions to define ARCH and CROSS_COMPILE:

I Pass ARCH and CROSS_COMPILE on the make command line:
make ARCH=arm CROSS_COMPILE=arm-linux- ...

Drawback: it is easy to forget to pass these variables when
you run any make command, causing your build and
configuration to be screwed up.

I Define ARCH and CROSS_COMPILE as environment variables:
export ARCH=arm

export CROSS_COMPILE=arm-linux-

Drawback: it only works inside the current shell or terminal.
You could put these settings in a file that you source every
time you start working on the project. If you only work on a
single architecture with always the same toolchain, you could
even put these settings in your ~/.bashrc file to make them
permanent and visible from any terminal.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 101/742

Predefined configuration files

I Default configuration files available, per board or per-CPU
family

I They are stored in arch/<arch>/configs/, and are just
minimal .config files

I This is the most common way of configuring a kernel for
embedded platforms

I Run make help to find if one is available for your platform

I To load a default configuration file, just run
make acme_defconfig

I This will overwrite your existing .config file!

I To create your own default configuration file
I make savedefconfig, to create a minimal configuration file
I mv defconfig arch/<arch>/configs/myown_defconfig

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 102/742

Configuring the kernel

I After loading a default configuration file, you can adjust the
configuration to your needs with the normal xconfig,
gconfig or menuconfig interfaces

I You can also start the configuration from scratch without
loading a default configuration file

I As the architecture is different from your host architecture
I Some options will be different from the native configuration

(processor and architecture specific options, specific drivers,
etc.)

I Many options will be identical (filesystems, network protocol,
architecture-independent drivers, etc.)

I Make sure you have the support for the right CPU, the right
board and the right device drivers.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 103/742

Building and installing the kernel

I Run make

I Copy the final kernel image to the target storage
I can be uImage, zImage, vmlinux, bzImage in

arch/<arch>/boot

I make install is rarely used in embedded development, as
the kernel image is a single file, easy to handle

I It is however possible to customize the make install behaviour
in arch/<arch>/boot/install.sh

I make modules_install is used even in embedded
development, as it installs many modules and description files

I make INSTALL_MOD_PATH=<dir>/ modules_install
I The INSTALL_MOD_PATH variable is needed to install the

modules in the target root filesystem instead of your host root
filesystem.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 104/742

Kernel command line

I In addition to the compile time configuration, the kernel
behaviour can be adjusted with no recompilation using the
kernel command line

I The kernel command line is a string that defines various
arguments to the kernel

I It is very important for system configuration
I root= for the root filesystem (covered later)
I console= for the destination of kernel messages
I and many more, documented in

Documentation/kernel-parameters.txt in the kernel
sources

I This kernel command line is either
I Passed by the bootloader. In U-Boot, the contents of the

bootargs environment variable is automatically passed to the
kernel

I Built into the kernel, using the CONFIG_CMDLINE option.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 105/742

http://free-electrons.com/kerneldoc/latest/kernel-parameters.txt

Kernel Source Code

Using kernel modules

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 106/742

Advantages of modules

I Modules make it easy to develop drivers without rebooting:
load, test, unload, rebuild, load...

I Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

I Also useful to reduce boot time: you don’t spend time
initializing devices and kernel features that you only need later.

I Caution: once loaded, have full control and privileges in the
system. No particular protection. That’s why only the root

user can load and unload modules.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 107/742

Module dependencies

I Some kernel modules can depend on other modules, which
need to be loaded first.

I Example: the usb-storage module depends on the
scsi_mod, libusual and usbcore modules.

I Dependencies are described in
/lib/modules/<kernel-version>/modules.dep

This file is generated when you run make modules_install.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 108/742

Kernel log

When a new module is loaded, related information is available in
the kernel log.

I The kernel keeps its messages in a circular buffer (so that it
doesn’t consume more memory with many messages)

I Kernel log messages are available through the dmesg

command (diagnostic message)

I Kernel log messages are also displayed in the system console
(console messages can be filtered by level using the loglevel

kernel parameter, or completely disabled with the quiet

parameter).

I Note that you can write to the kernel log from userspace too:
echo "Debug info" > /dev/kmsg

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 109/742

Module utilities (1)

I modinfo <module_name>

modinfo <module_path>.ko

Gets information about a module: parameters, license,
description and dependencies.
Very useful before deciding to load a module or not.

I sudo insmod <module_path>.ko

Tries to load the given module. The full path to the module
object file must be given.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 110/742

Understanding module loading issues

I When loading a module fails, insmod often doesn’t give you
enough details!

I Details are often available in the kernel log.

I Example:

$ sudo insmod ./intr_monitor.ko

insmod: error inserting ’./intr_monitor.ko’: -1 Device or resource busy

$ dmesg

[17549774.552000] Failed to register handler for irq channel 2

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 111/742

Module utilities (2)

I sudo modprobe <module_name>

Most common usage of modprobe: tries to load all the
modules the given module depends on, and then this module.
Lots of other options are available. modprobe automatically
looks in /lib/modules/<version>/ for the object file
corresponding to the given module name.

I lsmod

Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 112/742

Module utilities (3)

I sudo rmmod <module_name>

Tries to remove the given module.
Will only be allowed if the module is no longer in use (for
example, no more processes opening a device file)

I sudo modprobe -r <module_name>

Tries to remove the given module and all dependent modules
(which are no longer needed after removing the module)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 113/742

Passing parameters to modules

I Find available parameters:
modinfo snd-intel8x0m

I Through insmod:
sudo insmod ./snd-intel8x0m.ko index=-2

I Through modprobe:
Set parameters in /etc/modprobe.conf or in any file in
/etc/modprobe.d/:
options snd-intel8x0m index=-2

I Through the kernel command line, when the driver is built
statically into the kernel:
snd-intel8x0m.index=-2

I snd-intel8x0m is the driver name
I index is the driver parameter name
I -2 is the driver parameter value

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 114/742

Useful reading

Linux Kernel in a Nutshell, Dec 2006

I By Greg Kroah-Hartman, O’Reilly
http://www.kroah.com/lkn/

I A good reference book and guide on
configuring, compiling and managing the
Linux kernel sources.

I Freely available on-line!
Great companion to the printed book for
easy electronic searches!
Available as single PDF file on
http://free-electrons.com/

community/kernel/lkn/

I Our rating: 2 stars

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 115/742

http://www.kroah.com/lkn/
http://free-electrons.com/community/kernel/lkn/
http://free-electrons.com/community/kernel/lkn/

Bootloaders

Bootloaders
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 116/742

Bootloaders

Boot Sequence

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 117/742

Bootloaders

I The bootloader is a piece of code responsible for
I Basic hardware initialization
I Loading of an application binary, usually an operating system

kernel, from flash storage, from the network, or from another
type of non-volatile storage.

I Possibly decompression of the application binary
I Execution of the application

I Besides these basic functions, most bootloaders provide a shell
with various commands implementing different operations.

I Loading of data from storage or network, memory inspection,
hardware diagnostics and testing, etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 118/742

Bootloaders on x86 (1)

I The x86 processors are typically bundled on a
board with a non-volatile memory containing a
program, the BIOS.

I This program gets executed by the CPU after
reset, and is responsible for basic hardware
initialization and loading of a small piece of code
from non-volatile storage.

I This piece of code is usually the first 512 bytes
of a storage device

I This piece of code is usually a 1st stage
bootloader, which will load the full bootloader
itself.

I The bootloader can then offer all its features. It
typically understands filesystem formats so that
the kernel file can be loaded directly from a
normal filesystem.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 119/742

Bootloaders on x86 (2)

I GRUB, Grand Unified Bootloader, the most powerful one.
http://www.gnu.org/software/grub/

I Can read many filesystem formats to load the kernel image and
the configuration, provides a powerful shell with various
commands, can load kernel images over the network, etc.

I See our dedicated presentation for details:
http://free-electrons.com/docs/grub/

I Syslinux, for network and removable media booting (USB key,
CD-ROM)
http://www.kernel.org/pub/linux/utils/boot/syslinux/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 120/742

http://www.gnu.org/software/grub/
http://free-electrons.com/docs/grub/
http://www.kernel.org/pub/linux/utils/boot/syslinux/

Booting on embedded CPUs: case 1

I When powered, the CPU starts executing code
at a fixed address

I There is no other booting mechanism provided
by the CPU

I The hardware design must ensure that a NOR
flash chip is wired so that it is accessible at the
address at which the CPU starts executing
instructions

I The first stage bootloader must be programmed
at this address in the NOR

I NOR is mandatory, because it allows random
access, which NAND doesn’t allow

I Not very common anymore (unpractical, and
requires NOR flash)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 121/742

Booting on embedded CPUs: case 2

I The CPU has an integrated boot code in ROM
I BootROM on AT91 CPUs, “ROM code” on OMAP, etc.
I Exact details are CPU-dependent

I This boot code is able to load a first stage bootloader from a
storage device into an internal SRAM (DRAM not initialized
yet)

I Storage device can typically be: MMC, NAND, SPI flash,
UART, etc.

I The first stage bootloader is
I Limited in size due to hardware constraints (SRAM size)
I Provided either by the CPU vendor or through community

projects

I This first stage bootloader must initialize DRAM and other
hardware devices and load a second stage bootloader into
RAM

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 122/742

Booting on ARM Atmel AT91

I RomBoot: tries to find a valid bootstrap image
from various storage sources, and load it into
SRAM (DRAM not initialized yet). Size limited
to 4 KB. No user interaction possible in standard
boot mode.

I AT91Bootstrap: runs from SRAM. Initializes the
DRAM, the NAND or SPI controller, and loads
the secondary bootloader into RAM and starts it.
No user interaction possible.

I U-Boot: runs from RAM. Initializes some other
hardware devices (network, USB, etc.). Loads the
kernel image from storage or network to RAM
and starts it. Shell with commands provided.

I Linux Kernel: runs from RAM. Takes over the
system completely (bootloaders no longer exists).

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 123/742

Booting on ARM OMAP3

I ROM Code: tries to find a valid bootstrap image
from various storage sources, and load it into
SRAM or RAM (RAM can be initialized by ROM
code through a configuration header). Size
limited to <64 KB. No user interaction possible.

I X-Loader: runs from SRAM. Initializes the
DRAM, the NAND or MMC controller, and loads
the secondary bootloader into RAM and starts it.
No user interaction possible. File called MLO.

I U-Boot: runs from RAM. Initializes some other
hardware devices (network, USB, etc.). Loads the
kernel image from storage or network to RAM
and starts it. Shell with commands provided. File
called u-boot.bin.

I Linux Kernel: runs from RAM. Takes over the
system completely (bootloaders no longer exists).

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 124/742

Generic bootloaders for embedded CPUs

I We will focus on the generic part, the main bootloader,
offering the most important features.

I There are several open-source generic bootloaders.
Here are the most popular ones:

I U-Boot, the universal bootloader by Denx
The most used on ARM, also used on PPC, MIPS, x86, m68k,
NIOS, etc. The de-facto standard nowadays. We will study it
in detail.
http://www.denx.de/wiki/U-Boot

I Barebox, a new architecture-neutral bootloader, written as a
successor of U-Boot. Better design, better code, active
development, but doesn’t yet have as much hardware support
as U-Boot.
http://www.barebox.org

I There are also a lot of other open-source or proprietary
bootloaders, often architecture-specific

I RedBoot, Yaboot, PMON, etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 125/742

http://www.denx.de/wiki/U-Boot
http://www.barebox.org

Bootloaders

The U-boot bootloader

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 126/742

U-Boot

U-Boot is a typical free software project

I Freely available at http://www.denx.de/wiki/U-Boot

I Documentation available at
http://www.denx.de/wiki/U-Boot/Documentation

I The latest development source code is available in a Git
repository: http://git.denx.de/cgi-

bin/gitweb.cgi?p=u-boot.git;a=summary

I Development and discussions happen around an open
mailing-list http://lists.denx.de/pipermail/u-boot/

I Since the end of 2008, it follows a fixed-interval release
schedule. Every two months, a new version is released.
Versions are named YYYY.MM.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 127/742

http://www.denx.de/wiki/U-Boot
http://www.denx.de/wiki/U-Boot/Documentation
http://git.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary
http://git.denx.de/cgi-bin/gitweb.cgi?p=u-boot.git;a=summary
http://lists.denx.de/pipermail/u-boot/

U-Boot configuration

I Get the source code from the website, and uncompress it
I The include/configs/ directory contains one configuration

file for each supported board
I It defines the CPU type, the peripherals and their

configuration, the memory mapping, the U-Boot features that
should be compiled in, etc.

I It is a simple .h file that sets C pre-processor constants. See
the README file for the documentation of these constants.

I Assuming that your board is already supported by U-Boot,
there should be one file corresponding to your board, for
example include/configs/igep0020.h

I This file can also be adjusted to add or remove features from
U-Boot

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 128/742

U-Boot configuration file excerpt

/* CPU configuration */

#define CONFIG_ARMV7 1

#define CONFIG_OMAP 1

#define CONFIG_OMAP34XX 1

#define CONFIG_OMAP3430 1

#define CONFIG_OMAP3_IGEP0020 1

[...]

/* Memory configuration */

#define CONFIG_NR_DRAM_BANKS 2

#define PHYS_SDRAM_1 OMAP34XX_SDRC_CS0

#define PHYS_SDRAM_1_SIZE (32 << 20)

#define PHYS_SDRAM_2 OMAP34XX_SDRC_CS1

[...]

/* USB configuration */

#define CONFIG_MUSB_UDC 1

#define CONFIG_USB_OMAP3 1

#define CONFIG_TWL4030_USB 1

[...]

/* Available commands and features */

#define CONFIG_CMD_CACHE

#define CONFIG_CMD_EXT2

#define CONFIG_CMD_FAT

#define CONFIG_CMD_I2C

#define CONFIG_CMD_MMC

#define CONFIG_CMD_NAND

#define CONFIG_CMD_NET

#define CONFIG_CMD_DHCP

#define CONFIG_CMD_PING

#define CONFIG_CMD_NFS

#define CONFIG_CMD_MTDPARTS

[...]

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 129/742

Configuring and compiling U-Boot

I U-Boot must be configured before being compiled
I make BOARDNAME_config
I Where BOARDNAME is usually the name of the configuration file

in include/configs/, without .h

I Make sure that the cross-compiler is available in PATH

I Compile U-Boot, by specifying the cross-compiler prefix.
Example, if your cross-compiler executable is arm-linux-gcc:
make CROSS_COMPILE=arm-linux-

I The result is a u-boot.bin file, which is the U-Boot image

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 130/742

Installing U-Boot

I U-Boot must usually be installed in flash memory to be
executed by the hardware. Depending on the hardware, the
installation of U-Boot is done in a different way:

I The CPU provides some kind of specific boot monitor with
which you can communicate through serial port or USB using
a specific protocol

I The CPU boots first on removable media (MMC) before
booting from fixed media (NAND). In this case, boot from
MMC to reflash a new version

I U-Boot is already installed, and can be used to flash a new
version of U-Boot. However, be careful: if the new version of
U-Boot doesn’t work, the board is unusable

I The board provides a JTAG interface, which allows to write to
the flash memory remotely, without any system running on the
board. It also allows to rescue a board if the bootloader
doesn’t work.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 131/742

U-boot prompt

I Connect the target to the host through a serial console

I Power-up the board. On the serial console, you will see
something like:

U-Boot 2011.12 (May 04 2012 - 10:31:05)

OMAP36XX/37XX-GP ES1.2, CPU-OPP2, L3-165MHz, Max CPU Clock 1 Ghz

IGEP v2 board + LPDDR/ONENAND

I2C: ready

DRAM: 512 MiB

NAND: 512 MiB

MMC: OMAP SD/MMC: 0

[...]

Net: smc911x-0

Hit any key to stop autoboot: 0

U-Boot #

I The U-Boot shell offers a set of commands. We will study the
most important ones, see the documentation for a complete
reference or the help command.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 132/742

Information commands

Flash information (NOR and SPI flash)

U-Boot> flinfo

DataFlash:AT45DB021

Nb pages: 1024

Page Size: 264

Size= 270336 bytes

Logical address: 0xC0000000

Area 0: C0000000 to C0001FFF (RO) Bootstrap

Area 1: C0002000 to C0003FFF Environment

Area 2: C0004000 to C0041FFF (RO) U-Boot

NAND flash information

U-Boot> nand info

Device 0: NAND 256MiB 3,3V 8-bit, sector size 128 KiB

Version details

U-Boot> version

U-Boot 2009.08 (Nov 15 2009 - 14:48:35)

Those details will vary from one board to the other (according to
the U-Boot configuration and hardware devices)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 133/742

Important commands (1)

I The exact set of commands depends on the U-Boot
configuration

I help and help command

I boot, runs the default boot command, stored in bootcmd

I bootm <address> , starts a kernel image loaded at the given
address in RAM

I ext2load, loads a file from an ext2 filesystem to RAM
I And also ext2ls to list files, ext2info for information

I fatload, loads a file from a FAT filesystem to RAM
I And also fatls and fatinfo

I tftp, loads a file from the network to RAM

I ping, to test the network

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 134/742

Important commands (2)

I loadb, loads, loady, load a file from the serial line to RAM

I usb, to initialize and control the USB subsystem, mainly used
for USB storage devices such as USB keys

I mmc, to initialize and control the MMC subsystem, used for
SD and microSD cards

I nand, to erase, read and write contents to NAND flash

I erase, protect, cp, to erase, modify protection and write to
NOR flash

I md, displays memory contents. Can be useful to check the
contents loaded in memory, or to look at hardware registers.

I mm, modifies memory contents. Can be useful to modify
directly hardware registers, for testing purposes.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 135/742

Environment variables commands

I U-Boot can be configured through environment variables,
which affect the behavior of the different commands.

I Environment variables are loaded from flash to RAM at
U-Boot startup, can be modified and saved back to flash for
persistence

I There is a dedicated location in flash to store U-Boot
environment, defined in the board configuration file

I Commands to manipulate environment variables:
I printenv, shows all variables
I printenv <variable-name>, shows the value of one variable
I setenv <variable-name> <variable- value>, changes

the value of a variable, only in RAM
I saveenv, saves the current state of the environment to flash

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 136/742

Environment variables commands (2)

u-boot # printenv

baudrate=19200

ethaddr=00:40:95:36:35:33

netmask=255.255.255.0

ipaddr=10.0.0.11

serverip=10.0.0.1

stdin=serial

stdout=serial

stderr=serial

u-boot # printenv serverip

serverip=10.0.0.2

u-boot # setenv serverip 10.0.0.100

u-boot # saveenv

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 137/742

Important U-Boot env variables

I bootcmd, contains the command that U-Boot will
automatically execute at boot time after a configurable delay,
if the process is not interrupted

I bootargs, contains the arguments passed to the Linux kernel,
covered later

I serverip, the IP address of the server that U-Boot will
contact for network related commands

I ipaddr, the IP address that U-Boot will use

I netmask, the network mask to contact the server

I ethaddr, the MAC address, can only be set once

I bootdelay, the delay in seconds before which U-Boot runs
bootcmd

I autostart, if yes, U-Boot starts automatically an image that
has been loaded into memory

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 138/742

Scripts in environment variables

I Environment variables can contain small scripts, to execute
several commands and test the results of commands.

I Useful to automate booting or upgrade processes
I Several commands can be chained using the ; operator
I Tests can be done using

if command ; then ... ; else ... ; fi
I Scripts are executed using run <variable-name>
I You can reference other variables using ${variable-name}

I Example
I setenv mmc-boot ’mmc init 0; if fatload mmc 0

80000000 boot.ini; then source; else if fatload

mmc 0 80000000 uImage; then run mmc-

bootargs; bootm; fi; fi’

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 139/742

Transferring files to the target

I U-Boot is mostly used to load and boot a kernel image, but it
also allows to change the kernel image and the root filesystem
stored in flash.

I Files must be exchanged between the target and the
development workstation. This is possible:

I Through the network if the target has an Ethernet connection,
and U-Boot contains a driver for the Ethernet chip. This is the
fastest and most efficient solution.

I Through a USB key, if U-Boot support the USB controller of
your platform

I Through a SD or microSD card, if U-Boot supports the MMC
controller of your platform

I Through the serial port

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 140/742

TFTP

I Network transfer from the development workstation and
U-Boot on the target takes place through TFTP

I Trivial File Transfer Protocol
I Somewhat similar to FTP, but without authentication and over

UDP

I A TFTP server is needed on the development workstation
I sudo apt-get install tftpd-hpa
I All files in /var/lib/tftpboot are then visible through TFTP
I A TFTP client is available in the tftp-hpa package, for

testing

I A TFTP client is integrated into U-Boot
I Configure the ipaddr and serverip environment variables
I Use tftp <address> <filename> to load a file

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 141/742

U-boot mkimage

I The kernel image that U-Boot loads and boots must be
prepared, so that a U-Boot specific header is added in front of
the image

I This header gives details such as the image size, the expected
load address, the compression type, etc.

I This is done with a tool that comes in U-Boot, mkimage

I Debian / Ubuntu: just install the u-boot-tools package.

I Or, compile it by yourself: simply configure U-Boot for any
board of any architecture and compile it. Then install
mkimage:
cp tools/mkimage /usr/local/bin/

I The special target uImage of the kernel Makefile can then be
used to generate a kernel image suitable for U-Boot.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 142/742

Linux Root Filesystem

Linux Root
Filesystem
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 143/742

Linux Root Filesystem

Principle and solutions

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 144/742

Filesystems

I Filesystems are used to organize data in directories and files
on storage devices or on the network. The directories and files
are organized as a hierarchy

I In Unix systems, applications and users see a single global
hierarchy of files and directories, which can be composed of
several filesystems.

I Filesystems are mounted in a specific location in this
hierarchy of directories

I When a filesystem is mounted in a directory (called mount
point), the contents of this directory reflects the contents of
the storage device

I When the filesystem is unmounted, the mount point is empty
again.

I This allows applications to access files and directories easily,
regardless of their exact storage location

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 145/742

Filesystems (2)

I Create a mount point, which is just a directory
$ mkdir /mnt/usbkey

I It is empty
$ ls /mnt/usbkey

$

I Mount a storage device in this mount point
$ mount -t vfat /dev/sda1 /mnt/usbkey

$

I You can access the contents of the USB key
$ ls /mnt/usbkey

docs prog.c picture.png movie.avi

$

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 146/742

mount / umount

I mount allows to mount filesystems
I mount -t type device mountpoint
I type is the type of filesystem
I device is the storage device, or network location to mount
I mountpoint is the directory where files of the storage device

or network location will be accessible
I mount with no arguments shows the currently mounted

filesystems

I umount allows to unmount filesystems
I This is needed before rebooting, or before unplugging a USB

key, because the Linux kernel caches writes in memory to
increase performances. umount makes sure that those writes
are committed to the storage.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 147/742

Root filesystem

I A particular filesystem is mounted at the root of the hierarchy,
identified by /

I This filesystem is called the root filesystem
I As mount and umount are programs, they are files inside a

filesystem.
I They are not accessible before mounting at least one

filesystem.

I As the root filesystem is the first mounted filesystem, it
cannot be mounted with the normal mount command

I It is mounted directly by the kernel, according to the root=

kernel option

I When no root filesystem is available, the kernel panics
Please append a correct "root=" boot option

Kernel panic - not syncing: VFS: Unable to mount root fs on unknown block(0,0)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 148/742

Location of the root filesystem

I It can be mounted from different locations
I From the partition of a hard disk
I From the partition of a USB key
I From the partition of an SD card
I From the partition of a NAND flash chip or similar type of

storage device
I From the network, using the NFS protocol
I From memory, using a pre-loaded filesystem (by the

bootloader)
I etc.

I It is up to the system designer to choose the configuration for
the system, and configure the kernel behaviour with root=

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 149/742

Mounting rootfs from storage devices

I Partitions of a hard disk or USB key
I root=/dev/sdXY, where X is a letter indicating the device,

and Y a number indicating the partition
I /dev/sdb2 is the second partition of the second disk drive

(either USB key or ATA hard drive)

I Partitions of an SD card
I root=/dev/mmcblkXpY, where X is a number indicating the

device and Y a number indicating the partition
I /dev/mmcblk0p2 is the second partition of the first device

I Partitions of flash storage
I root=/dev/mtdblockX, where X is the partition number
I /dev/mtdblock3 is the fourth partition of a NAND flash chip

(if only one NAND flash chip is present)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 150/742

Mounting rootfs over the network (1)

Once networking works, your root filesystem could be a directory
on your GNU/Linux development host, exported by NFS (Network
File System). This is very convenient for system development:

I Makes it very easy to update files on the root filesystem,
without rebooting. Much faster than through the serial port.

I Can have a big root filesystem even if you don’t have support
for internal or external storage yet.

I The root filesystem can be huge. You can even build native
compiler tools and build all the tools you need on the target
itself (better to cross-compile though).

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 151/742

Mounting rootfs over the network (2)

On the development workstation side, a NFS server is needed

I Install an NFS server (example: Debian, Ubuntu)
sudo apt-get install nfs-kernel-server

I Add the exported directory to your /etc/exports file:
/home/tux/rootfs 192.168.1.111(rw,no_root_squash,
no_subtree_check)

I 192.168.1.111 is the client IP address
I rw,no_root_squash,no_subtree_check are the NFS server

options for this directory export.

I Start or restart your NFS server (example: Debian, Ubuntu)
sudo /etc/init.d/nfs-kernel-server restart

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 152/742

Mounting rootfs over the network (3)

I On the target system
I The kernel must be compiled with

I CONFIG_NFS_FS=y (NFS support)
I CONFIG_IP_PNP=y (configure IP at boot time)
I CONFIG_ROOT_NFS=y (support for NFS as rootfs)

I The kernel must be booted with the following parameters:
I root=/dev/nfs (we want rootfs over NFS)
I ip=192.168.1.111 (target IP address)
I nfsroot=192.168.1.110:/home/tux/rootfs/ (NFS server

details)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 153/742

Mounting rootfs over the network (4)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 154/742

rootfs in memory: initramfs (1)

I It is also possible to have the root filesystem integrated into
the kernel image

I It is therefore loaded into memory together with the kernel
I This mechanism is called initramfs

I It integrates a compressed archive of the filesystem into the
kernel image

I It is useful for two cases
I Fast booting of very small root filesystems. As the filesystem is

completely loaded at boot time, application startup is very fast.
I As an intermediate step before switching to a real root

filesystem, located on devices for which drivers not part of the
kernel image are needed (storage drivers, filesystem drivers,
network drivers). This is always used on the kernel of
desktop/server distributions to keep the kernel image size
reasonable.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 155/742

rootfs in memory: initramfs (2)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 156/742

rootfs in memory: initramfs (3)

I The contents of an initramfs are defined at the kernel
configuration level, with the CONFIG_INITRAMFS_SOURCE
option

I Can be the path to a directory containing the root filesystem
contents

I Can be the path to a cpio archive
I Can be a text file describing the contents of the initramfs (see

documentation for details)

I The kernel build process will automatically take the contents
of the CONFIG_INITRAMFS_SOURCE option and integrate the
root filesystem into the kernel image

I Documentation/filesystems/ramfs-rootfs-

initramfs.txt

Documentation/early-userspace/README

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 157/742

http://free-electrons.com/kerneldoc/latest/filesystems/ramfs-rootfs-initramfs.txt
http://free-electrons.com/kerneldoc/latest/filesystems/ramfs-rootfs-initramfs.txt
http://free-electrons.com/kerneldoc/latest/early-userspace/README

Linux Root Filesystem

Contents

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 158/742

Root filesystem organization

I The organization of a Linux root filesystem in terms of
directories is well-defined by the Filesystem Hierarchy
Standard

I http://www.linuxfoundation.org/collaborate/

workgroups/lsb/fhs

I Most Linux systems conform to this specification
I Applications expect this organization
I It makes it easier for developers and users as the filesystem

organization is similar in all systems

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 159/742

http://www.linuxfoundation.org/collaborate/workgroups/lsb/fhs
http://www.linuxfoundation.org/collaborate/workgroups/lsb/fhs

Important directories (1)

/bin Basic programs

/boot Kernel image (only when the kernel is loaded from a
filesystem, not common on non-x86 architectures)

/dev Device files (covered later)

/etc System-wide configuration

/home Directory for the users home directories

/lib Basic libraries

/media Mount points for removable media

/mnt Mount points for static media

/proc Mount point for the proc virtual filesystem

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 160/742

Important directories (2)

/root Home directory of the root user

/sbin Basic system programs

/sys Mount point of the sysfs virtual filesystem

/tmp Temporary files

/usr /usr/bin Non-basic programs
/usr/lib Non-basic libraries

/usr/sbin Non-basic system programs

/var Variable data files. This includes spool directories
and files, administrative and logging data, and
transient and temporary files

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 161/742

Separation of programs and libraries

I Basic programs are installed in /bin and /sbin and basic
libraries in /lib

I All other programs are installed in /usr/bin and /usr/sbin

and all other libraries in /usr/lib

I In the past, on Unix systems, /usr was very often mounted
over the network, through NFS

I In order to allow the system to boot when the network was
down, some binaries and libraries are stored in /bin, /sbin
and /lib

I /bin and /sbin contain programs like ls, ifconfig, cp,
bash, etc.

I /lib contains the C library and sometimes a few other basic
libraries

I All other programs and libraries are in /usr

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 162/742

Linux Root Filesystem

Device Files

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 163/742

Devices

I One of the kernel important role is to allow applications to
access hardware devices

I In the Linux kernel, most devices are presented to userspace
applications through two different abstractions

I Character device
I Block device

I Internally, the kernel identifies each device by a triplet of
information

I Type (character or block)
I Major (typically the category of device)
I Minor (typically the identifier of the device)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 164/742

Types of devices

I Block devices
I A device composed of fixed-sized blocks, that can be read and

written to store data
I Used for hard disks, USB keys, SD cards, etc.

I Character devices
I Originally, an infinite stream of bytes, with no beginning, no

end, no size. The pure example: a serial port.
I Used for serial ports, terminals, but also sound cards, video

acquisition devices, frame buffers
I Most of the devices that are not block devices are represented

as character devices by the Linux kernel

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 165/742

Devices: everything is a file

I A very important Unix design decision was to represent most
of the “system objects” as files

I It allows applications to manipulate all “system objects” with
the normal file API (open, read, write, close, etc.)

I So, devices had to be represented as files to the applications

I This is done through a special artifact called a device file

I It is a special type of file, that associates a file name visible to
userspace applications to the triplet (type, major, minor) that
the kernel understands

I All device files are by convention stored in the /dev directory

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 166/742

Device files examples

Example of device files in a Linux system

$ ls -l /dev/ttyS0 /dev/tty1 /dev/sda1 /dev/sda2 /dev/zero

brw-rw---- 1 root disk 8, 1 2011-05-27 08:56 /dev/sda1

brw-rw---- 1 root disk 8, 2 2011-05-27 08:56 /dev/sda2

crw------- 1 root root 4, 1 2011-05-27 08:57 /dev/tty1

crw-rw---- 1 root dialout 4, 64 2011-05-27 08:56 /dev/ttyS0

crw-rw-rw- 1 root root 1, 5 2011-05-27 08:56 /dev/zero

Example C code that uses the usual file API to write data to a
serial port

int fd;

fd = open("/dev/ttyS0", O_RDWR);

write(fd, "Hello", 5);

close(fd);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 167/742

Creating device files

I On a basic Linux system, the device files have to be created
manually using the mknod command

I mknod /dev/<device> [c|b] major minor
I Needs root privileges
I Coherency between device files and devices handled by the

kernel is left to the system developer

I On more elaborate Linux systems, mechanisms can be added
to create/remove them automatically when devices appear
and disappear

I devtmpfs virtual filesystem, since kernel 2.6.32
I udev daemon, solution used by desktop and server Linux

systems
I mdev program, a lighter solution than udev

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 168/742

Linux Root Filesystem

Virtual Filesystems

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 169/742

proc virtual filesystem

I The proc virtual filesystem exists since the beginning of Linux
I It allows

I The kernel to expose statistics about running processes in the
system

I The user to adjust at runtime various system parameters about
process management, memory management, etc.

I The proc filesystem is used by many standard userspace
applications, and they expect it to be mounted in /proc

I Applications such as ps or top would not work without the
proc filesystem

I Command to mount /proc:
mount -t proc nodev /proc

I Documentation/filesystems/proc.txt in the kernel
sources

I man proc

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 170/742

http://free-electrons.com/kerneldoc/latest/filesystems/proc.txt

proc contents

I One directory for each running process in the system
I /proc/<pid>
I cat /proc/3840/cmdline
I It contains details about the files opened by the process, the

CPU and memory usage, etc.

I /proc/interrupts, /proc/devices, /proc/iomem,
/proc/ioports contain general device-related information

I /proc/cmdline contains the kernel command line
I /proc/sys contains many files that can be written to to

adjust kernel parameters
I They are called sysctl. See

Documentation//latest/sysctl/ in kernel sources.
I Example

echo 3 > /proc/sys/vm/drop_caches

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 171/742

http://free-electrons.com/kerneldoc/latest//latest/sysctl/

sysfs filesystem

I The sysfs filesystem is a feature integrated in the 2.6 Linux
kernel

I It allows to represent in userspace the vision that the kernel
has of the buses, devices and drivers in the system

I It is useful for various userspace applications that need to list
and query the available hardware, for example udev or mdev.

I All applications using sysfs expect it to be mounted in the
/sys directory

I Command to mount /sys:
mount -t sysfs nodev /sys

I $ ls /sys/

block bus class dev devices firmware

fs kernel modulepower

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 172/742

Linux Root Filesystem

Minimal filesystem

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 173/742

Basic applications

I In order to work, a Linux system needs at least a few
applications

I An init application, which is the first userspace application
started by the kernel after mounting the root filesystem

I The kernel tries to run /sbin/init, /bin/init, /etc/init
and /bin/sh.

I If none of them are found, the kernel panics and the boot
process is stopped.

I The init application is responsible for starting all other
userspace applications and services

I Usually a shell, to allow a user to interact with the system

I Basic Unix applications, to copy files, move files, list files
(commands like mv, cp, mkdir, cat, etc.)

I Those basic components have to be integrated into the root
filesystem to make it usable

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 174/742

Overall booting process

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 175/742

Busybox

Busybox
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 176/742

Why Busybox?

I A Linux system needs a basic set of programs to work
I An init program
I A shell
I Various basic utilities for file manipulation and system

configuration

I In normal Linux systems, those programs are provided by
different projects

I coreutils, bash, grep, sed, tar, wget, modutils, etc. are
all different projects

I A lot of different components to integrate
I Components not designed with embedded systems constraints

in mind: they are not very configurable and have a wide range
of features

I Busybox is an alternative solution, extremely common on
embedded systems

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 177/742

General purpose toolbox: BusyBox

I Rewrite of many useful Unix command line utilities
I Integrated into a single project, which makes it easy to work

with
I Designed with embedded systems in mind: highly configurable,

no unnecessary features

I All the utilities are compiled into a single executable,
/bin/busybox

I Symbolic links to /bin/busybox are created for each
application integrated into Busybox

I For a fairly featureful configuration, less than 500 KB
(statically compiled with uClibc) or less than 1 MB (statically
compiled with glibc).

I http://www.busybox.net/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 178/742

http://www.busybox.net/

BusyBox commands!

Commands available in BusyBox 1.13
[, [[, addgroup, adduser, adjtimex, ar, arp, arping, ash, awk, basename, bbconfig, bbsh,
brctl, bunzip2, busybox, bzcat, bzip2, cal, cat, catv, chat, chattr, chcon, chgrp, chmod,
chown, chpasswd, chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, cp, cpio, crond, crontab,
cryptpw, cttyhack, cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devfsd, df,
dhcprelay, diff, dirname, dmesg, dnsd, dos2unix, dpkg, dpkg_deb, du, dumpkmap, dumpleases,
e2fsck, echo, ed, egrep, eject, env, envdir, envuidgid, ether_wake, expand, expr, fakeidentd,
false, fbset, fbsplash, fdflush, fdformat, fdisk, fetchmail, fgrep, find, findfs, fold, free,
freeramdisk, fsck, fsck_minix, ftpget, ftpput, fuser, getenforce, getopt, getsebool, getty,
grep, gunzip, gzip, halt, hd, hdparm, head, hexdump, hostid, hostname, httpd, hush, hwclock,
id, ifconfig, ifdown, ifenslave, ifup, inetd, init, inotifyd, insmod, install, ip, ipaddr,
ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kbd_mode, kill, killall, killall5,
klogd, lash, last, length, less, linux32, linux64, linuxrc, ln, load_policy, loadfont,
loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr, ls, lsattr, lsmod, lzmacat,
makedevs, man, matchpathcon, md5sum, mdev, mesg, microcom, mkdir, mke2fs, mkfifo, mkfs_minix,
mknod, mkswap, mktemp, modprobe, more, mount, mountpoint, msh, mt, mv, nameif, nc, netstat,
nice, nmeter, nohup, nslookup, od, openvt, parse, passwd, patch, pgrep, pidof, ping, ping6,
pipe_progress, pivot_root, pkill, poweroff, printenv, printf, ps, pscan, pwd, raidautorun,
rdate, rdev, readahead, readlink, readprofile, realpath, reboot, renice, reset, resize,
restorecon, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run_parts, runcon, runlevel,
runsv, runsvdir, rx, script, sed, selinuxenabled, sendmail, seq, sestatus, setarch,
setconsole, setenforce, setfiles, setfont, setkeycodes, setlogcons, setsebool, setsid,
setuidgid, sh, sha1sum, showkey, slattach, sleep, softlimit, sort, split, start_stop_daemon,
stat, strings, stty, su, sulogin, sum, sv, svlogd, swapoff, swapon, switch_root, sync, sysctl,
syslogd, tac, tail, tar, taskset, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time, top,
touch, tr, traceroute, true, tty, ttysize, tune2fs, udhcpc, udhcpd, udpsvd, umount, uname,
uncompress, unexpand, uniq, unix2dos, unlzma, unzip, uptime, usleep, uudecode, uuencode,
vconfig, vi, vlock, watch, watchdog, wc, wget, which, who, whoami, xargs, yes, zcat, zcip

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 179/742

Applet highlight: Busybox init

I Busybox provides an implementation of an init program

I Simpler than the init implementation found on desktop/server
systems: no runlevels are implemented

I A single configuration file: /etc/inittab
I Each line has the form <id>::<action>:<process>

I Allows to run services at startup, and to make sure that
certain services are always running on the system

I See examples/inittab in Busybox for details on the
configuration

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 180/742

Applet highlight - BusyBox vi

I If you are using BusyBox, adding vi support only adds 20K.
(built with shared libraries, using uClibc).

I You can select which exact features to compile in.

I Users hardly realize that they are using a lightweight vi
version!

I Tip: you can learn vi on the desktop, by running the
vimtutor command.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 181/742

Configuring BusyBox

I Get the latest stable sources from http://busybox.net

I Configure BusyBox (creates a .config file):
I make defconfig

Good to begin with BusyBox.
Configures BusyBox with all options for regular users.

I make allnoconfig

Unselects all options. Good to configure only what you need.

I make xconfig (graphical, needs the libqt3-mt-dev

package)
or make menuconfig (text)
Same configuration interfaces as the ones used by the Linux
kernel (though older versions are used).

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 182/742

http://busybox.net

BusyBox make xconfig

You can choose:

I the commands
to compile,

I and even the
command
options and
features that
you need!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 183/742

Compiling BusyBox

I Set the cross-compiler prefix in the configuration interface:
BusyBox Settings -> Build Options -

> Cross Compiler prefix

Example: arm-linux-

I Set the installation directory in the configuration interface:
BusyBox Settings -> Installation Options -

> BusyBox installation prefix

I Add the cross-compiler path to the PATH environment
variable:
export PATH=/usr/xtools/arm-unknown-linux-

uclibcgnueabi/bin:$PATH

I Compile BusyBox:
make

I Install it (this creates a Unix directory structure symbolic links
to the busybox executable):
make install

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 184/742

Busybox

Init

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 185/742

System V init

I Examines the /etc/inittab file for an :initdefault: entry, which
tells init whether there is a default runlevel.

I The runlevels in System V describe certain states of a
machine, characterized by the processes run. These are the
runlevels 0 to 6 and S or s, which are aliased to the same
runlevel. Of these eight, 3 are so-called ”reserved” runlevels:

I 0: Halt
I 1: Single user mode
I 6: Reboot

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 186/742

System V scripts

I Each service is started and stopped using scripts located in
/etc/init.d. Those scripts are taking arguments (start,
stop, restart).

I For each runlevel, there is a directory called
/etc/rc<level>.d. That directory contains links to the
scripts in /etc/init.d.

I The script are launched by alphabetical order
I If the link starts by an S, ”start” is passed as an argument to

the script
I If the link starts by a K, ”stop” is passed as an argument to

the script

I example:
/etc/rc2.d/S99rc.local -> ../init.d/rc.local

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 187/742

Upstart

I The traditional init process is strictly synchronous, blocking
future tasks until the current one has completed.

I Upstart operates asynchronously, as well as handling the
starting of tasks and services during boot and stopping them
during shutdown, it supervises them while the system is
running.

I Upstart is able to run sysvinit scripts unmodified.

I Others services are configured in /etc/init/*.conf

I use the service command:
service <servicename> start|stop

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 188/742

systemd

I Linux only

I Tries to launch services in parallel and tracks dependencies

I manages socket-activated and bus-activated services

I uses cgroups to monitor services

I udev’s sources are now merged in systemd

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 189/742

systemd

I services (called units) are defined in
/usr/lib/systemd/system/

I they are linked in runlevels, for example:
/usr/lib/systemd/system/graphical.target or
/etc/systemd/system/<your target>

I controlled using systemclt start|stop <service>

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 190/742

Hotplugging with udev

Hotplugging with
udev
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 191/742

/dev issues and limitations

I On Red Hat 9, 18000 entries in /dev!
All entries for all possible devices had to be created at system
installation.

I Needed an authority to assign major numbers
http://lanana.org/: Linux Assigned Names and Numbers
Authority

I Not enough numbers in 2.4, limits extended in 2.6.

I Userspace neither knew what devices were present in the
system, nor which real device corresponded to each /dev

entry.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 192/742

http://lanana.org/

The udev solution

Takes advantage of sysfs introduced by Linux 2.6.

I Created by Greg Kroah Hartman, a huge contributor.
Other key contributors: Kay Sievers, Dan Stekloff.

I Entirely in user space.

I Automatically creates and removes device entries in /dev/

according to inserted and removed devices.

I Major and minor device transmitted by the kernel.

I Requires no change to driver code.

I Fast: written in C
Relatively small size: udevd version 167: 127 KB

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 193/742

Starting udev (1)

I At the very beginning of user-space startup, mount the /dev/

directory as a tmpfs filesystem:
sudo mount -t tmpfs udev /dev

I /dev/ is populated with static devices available in
/lib/udev/devices/:

$ ls -l /lib/udev/devices/

total 12

brw------- 1 root root 7, 0 2011-06-04 10:25 loop0

drwxr-xr-x 2 root root 4096 2011-06-04 10:25 net

crw------- 1 root root 108, 0 2011-06-04 10:25 ppp

drwxr-xr-x 2 root root 4096 2011-04-07 14:43 pts

drwxr-xr-x 2 root root 4096 2011-04-07 14:43 shm

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 194/742

Starting udev (2)

I The udevd daemon is started. It listens to uevents from the
driver core, which are sent whenever devices are inserted or
removed.

I The udevd daemon reads and parses all the rules found in
/etc/udev/rules.d/ and keeps them in memory.

I Whenever rules are added, removed or modified, udevd
receives an inotify event and updates its rule-set in memory.

I The inotify mechanism lets userspace programs subscribe to
notifications of filesystem changes.

I When an event is received, udevd starts a process to:
I try to match the event against udev rules,
I create / remove device files,
I and run programs (to load / remove a driver, to notify user

space...)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 195/742

uevent message example

Example inserting a USB mouse

recv(4,

"add@/class/input/input9/mouse2\0

ACTION=add\0

DEVPATH=/class/input/input9/mouse2\0

SUBSYSTEM=input\0

SEQNUM=1064\0

PHYSDEVPATH=/devices/pci0000:00/0000:00:1d.1/usb2/2-2/2-2:1.0\0

PHYSDEVBUS=usb\0

PHYSDEVDRIVER=usbhid\0

MAJOR=13\0

MINOR=34\0",

2048,

0)

= 221

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 196/742

udev rules

When a udev rule matching event information is found, it can be
used:

I To define the name and path of a device file.

I To define the owner, group and permissions of a device file.

I To execute a specified program.

Rule files are processed in lexical order.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 197/742

udev naming capabilities

Device names can be defined

I from a label or serial number,

I from a bus device number,

I from a location on the bus topology,

I from a kernel name,

I from the output of a program.

See http://www.reactivated.net/writing_udev_rules.html

for a very complete description. See also man udev.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 198/742

http://www.reactivated.net/writing_udev_rules.html

udev naming rule examples

Naming testing the output of a program

BUS=="scsi", PROGRAM="/sbin/scsi_id", RESULT=="OEM 0815", NAME="disk1"

USB printer to be called lp_color

BUS=="usb", SYSFS{serial}=="W09090207101241330", NAME="lp_color"

SCSI disk with a specific vendor and model number will be called boot

BUS=="scsi", SYSFS{vendor}=="IBM", SYSFS{model}=="ST336", NAME="boot%n"

sound card with PCI bus id 00:0b.0 to be called dsp

BUS=="pci", ID=="00:0b.0", NAME="dsp"

USB mouse at third port of the second hub to be called mouse1

BUS=="usb", PLACE=="2.3", NAME="mouse1"

ttyUSB1 should always be called pda with two additional symlinks

KERNEL=="ttyUSB1", NAME="pda", SYMLINK="palmtop handheld"

multiple USB webcams with symlinks to be called webcam0, webcam1, ...

BUS=="usb", SYSFS{model}=="XV3", NAME="video%n", SYMLINK="webcam%n"

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 199/742

udev permission rule examples

Excerpts from /etc/udev/rules.d/40-permissions.rules

Block devices

SUBSYSTEM!="block", GOTO="block_end"

SYSFS{removable}!="1", GROUP="disk"

SYSFS{removable}=="1", GROUP="floppy"

BUS=="usb", GROUP="plugdev"

BUS=="ieee1394", GROUP="plugdev"

LABEL="block_end"

Other devices, by name

KERNEL=="null", MODE="0666"

KERNEL=="zero", MODE="0666"

KERNEL=="full", MODE="0666"

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 200/742

Identifying device driver modules

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 201/742

Module aliases

I MODALIAS environment variable example (USB mouse):
MODALIAS=usb:

v046DpC03Ed2000dc00dsc00dp00ic03isc01ip02

I Matching line in
/lib/modules/<version>/modules.alias:
alias usb:v*p*d*dc*dsc*dp*ic03isc01ip02* usbmouse

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 202/742

udev modprobe rule examples

Even module loading is done with udev!
Excerpts from /etc/udev/rules.d/90-modprobe.rules

ACTION!="add", GOTO="modprobe_end"

SUBSYSTEM!="ide", GOTO="ide_end"

IMPORT{program}="ide_media --export $devpath"

ENV{IDE_MEDIA}=="cdrom",RUN+="/sbin/modprobe -Qba ide-cd"

ENV{IDE_MEDIA}=="disk",RUN+="/sbin/modprobe -Qba ide-disk"

ENV{IDE_MEDIA}=="floppy", RUN+="/sbin/modprobe -Qba ide-floppy"

ENV{IDE_MEDIA}=="tape", RUN+="/sbin/modprobe -Qba ide-tape"

LABEL="ide_end"

SUBSYSTEM=="input", PROGRAM="/sbin/grepmap --udev", \

RUN+="/sbin/modprobe -Qba $result"

Load drivers that match kernel-supplied alias

ENV{MODALIAS}=="?*", RUN+="/sbin/modprobe -Q $env{MODALIAS}"

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 203/742

Cold-plugging

I Issue: loosing all device events happening during kernel
initialization, because udev is not ready yet.

I Solution: after starting udevd, have the kernel emit uevents
for all devices present in /sys.

I This can be done by the udevtrigger utility.

I Strong benefit: completely transparent for userspace. Legacy
and removable devices handled and named in exactly the
same way.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 204/742

Debugging events - udevmonitor (1)

udevadm monitor visualizes the driver core events and the udev

event processes.
Example event sequence connecting a USB mouse:

UEVENT[1170452995.094476] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2

UEVENT[1170452995.094569] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0

UEVENT[1170452995.098337] add@/class/input/input28

UEVENT[1170452995.098618] add@/class/input/input28/mouse2

UEVENT[1170452995.098868] add@/class/input/input28/event4

UEVENT[1170452995.099110] add@/class/input/input28/ts2

UEVENT[1170452995.099353] add@/class/usb_device/usbdev4.30

UDEV [1170452995.165185] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2

UDEV [1170452995.274128] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0

UDEV [1170452995.375726] add@/class/usb_device/usbdev4.30

UDEV [1170452995.415638] add@/class/input/input28

UDEV [1170452995.504164] add@/class/input/input28/mouse2

UDEV [1170452995.525087] add@/class/input/input28/event4

UDEV [1170452995.568758] add@/class/input/input28/ts2

It gives time information measured in microseconds. You can
measure time elapsed between the uevent (UEVENT line), and the
completion of the corresponding udev process (matching UDEV

line).

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 205/742

Debugging events - udevmonitor (2)

udevadm monitor --env shows the complete event environment
for each line.

UDEV [1170453642.595297] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0

UDEV_LOG=3

ACTION=add

DEVPATH=/devices/pci0000:00/0000:00:1d.7/usb4/4-3/4-3.2/4-3.2:1.0

SUBSYSTEM=usb

SEQNUM=3417

PHYSDEVBUS=usb

DEVICE=/proc/bus/usb/004/031

PRODUCT=46d/c03d/2000

TYPE=0/0/0

INTERFACE=3/1/2

MODALIAS=usb:v046DpC03Dd2000dc00dsc00dp00ic03isc01ip02

UDEVD_EVENT=1

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 206/742

Misc udev utilities

I udevinfo

Lets users query the udev database.

I udevtest <sysfs_device_path>

Simulates a udev run to test the configured rules.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 207/742

Firmware hotplugging

Also implemented with udev!
I Firmware data are kept outside device drivers

I May not be legal or free enough to distribute
I Firmware in kernel code would occupy memory permanently,

even if just used once.

I Kernel configuration: needs to be set in CONFIG_FW_LOADER

(Device Drivers → Generic Driver Options → hotplug
firmware loading support)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 208/742

Firmware hotplugging implementation

See Documentation/firmware_class/ in the kernel sources for
a nice overview

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 209/742

http://free-electrons.com/kerneldoc/latest/firmware_class/

udev files

I /etc/udev/udev.conf

udev configuration file.
Mainly used to configure syslog reporting priorities.
Example setting: udev_log="err"

I /lib/udev/rules.d/

Standard udev event matching rules, installed by the
distribution.

I /etc/udev/rules.d/*.rules

Local (custom) udev event matching rules. Best to modify
these.

I /lib/udev/devices/*

static /dev content (such as /dev/console, /dev/null...).
I /lib/udev/*

helper programs called from udev rules.
I /dev/*

Created device files.
Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 210/742

Kernel configuration for udev

I Created for 2.6.19

I Caution: no documentation found, and not tested yet on a
minimalistic system. Some settings may still be missing.

I Subsystems and device drivers (USB, PCI, PCMCIA...) should
be added too!

General setup

CONFIG_HOTPLUG=y

Networking, networking options

CONFIG_NET=y

Unix domain sockets

CONFIG_UNIX=y

CONFIG_NETFILTER_NETLINK=y

CONFIG_NETFILTER_NETLINK_QUEUE=y

Pseudo filesystems

CONFIG_PROC_FS=y

CONFIG_SYSFS=y

Needed to manage /dev

CONFIG_TMPFS=y

CONFIG_RAMFS=y

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 211/742

udev summary - typical operation

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 212/742

udev resources

I Home page
http://kernel.org/pub/linux/utils/kernel/hotplug/

udev.html

I Sources
http://kernel.org/pub/linux/utils/kernel/hotplug/

I The udev manual page:
man udev

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 213/742

http://kernel.org/pub/linux/utils/kernel/hotplug/udev.html
http://kernel.org/pub/linux/utils/kernel/hotplug/udev.html
http://kernel.org/pub/linux/utils/kernel/hotplug/

mdev, the udev for embedded systems

I udev might be too heavy-weight for some embedded systems,
the udevd daemon staying in the background waiting for
events.

I BusyBox provides a simpler alternative called mdev, available
by enabling the MDEV configuration option.

I mdev’s usage is documented in doc/mdev.txt in the
BusyBox source code.

I mdevmdev is also able to load firmware to the kernel like udev

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 214/742

mdev usage

I To use mdev, the proc and sysfs filesystems must be
mounted

I mdev must be enabled as the hotplug event manager
echo /sbin/mdev > /proc/sys/kernel/hotplug

I Need to mount /dev as a tmpfs:
mount -t tmpfs mdev /dev

I Tell mdev to create the /dev entries corresponding to the
devices detected during boot when mdev was not running:
mdev -s

I The behavior is specified by the /etc/mdev.conf

configuration file, with the following format
<device regex> <uid>:<gid> <octal permissions>

[=path] [@|$|*<command>]

I Example
hd[a-z][0-9]* 0:3 660

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 215/742

Cross-compiling toolchains

Cross-compiling
toolchains
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 216/742

Cross-compiling toolchains

C Libraries

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 217/742

glibc

I License: LGPL

I C library from the GNU project

I Designed for performance, standards
compliance and portability

I Found on all GNU / Linux host systems

I Of course, actively maintained

I Quite big for small embedded systems:
approx 2.5 MB on ARM (version 2.9 -
libc: 1.5 MB, libm: 750 KB)

I http://www.gnu.org/software/libc/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 218/742

http://www.gnu.org/software/libc/

uClibc

I License: LGPL
I Lightweight C library for small embedded systems

I High configurability: many features can be enabled or disabled
through a menuconfig interface

I Works only with Linux/uClinux, works on most embedded
architectures

I No stable ABI, different ABI depending on the library
configuration

I Focus on size rather than performance
I Small compile time

I http://www.uclibc.org/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 219/742

http://www.uclibc.org/

uClibc (2)

I Most of the applications compile with uClibc. This applies to
all applications used in embedded systems.

I Size (arm): 4 times smaller than glibc!
I uClibc 0.9.30.1: approx. 600 KB (libuClibc: 460 KB, libm:

96KB)
I glibc 2.9: approx 2.5 MB

I Some features not available or limited: priority-inheritance
mutexes, NPTL support is very new, fixed Name Service
Switch functionality, etc.

I Used on a large number of production embedded products,
including consumer electronic devices

I Actively maintained, large developer and user base

I Supported and used by MontaVista, TimeSys and Wind River.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 220/742

Honey, I shrunk the programs!

I Executable size comparison on ARM, tested with glibc 2.9
and uClibc 0.9.30.1

I Plain “hello world” program (stripped)
I With shared libraries: 5.6 KB with glibc, 5.4 KB with uClibc
I With static libraries: 472 KB with glibc, 18 KB with uClibc

I Busybox (stripped)
I With shared libraries: 245 KB with glibc, 231 KB with uClibc
I With static libraries: 843 KB with glibc, 311 KB with uClibc

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 221/742

eglibc

I Embedded glibc, under the LGPL

I Variant of the GNU C Library (GLIBC) designed
to work well on embedded systems

I Strives to be source and binary compatible with
GLIBC

I eglibc’s goals include reduced footprint,
configurable components, better support for
cross-compilation and cross-testing.

I Can be built without support for NIS, locales,
IPv6, and many other features.

I Supported by a consortium, with Freescale,
MIPS, MontaVista and Wind River as members.

I The Debian distribution has switched to eglibc
too, http://blog.aurel32.net/?p=47

I http://www.eglibc.org
Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 222/742

http://blog.aurel32.net/?p=47
http://www.eglibc.org

Other smaller C libraries

I Several other smaller C libraries have been developed, but
none of them have the goal of allowing the compilation of
large existing applications

I They need specially written programs and applications
I Choices:

I Dietlibc, http://www.fefe.de/dietlibc/. Approximately
70 KB.

I Newlib, http://sourceware.org/newlib/
I Klibc, http://www.kernel.org/pub/linux/libs/klibc/,

designed for use in an initramfs or initrd at boot time.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 223/742

http://www.fefe.de/dietlibc/
http://sourceware.org/newlib/
http://www.kernel.org/pub/linux/libs/klibc/

Cross-compiling toolchains

Definition and Components

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 224/742

Definition (1)

I The usual development tools available on a GNU/Linux
workstation is a native toolchain

I This toolchain runs on your workstation and generates code
for your workstation, usually x86

I For embedded system development, it is usually impossible or
not interesting to use a native toolchain

I The target is too restricted in terms of storage and/or memory
I The target is very slow compared to your workstation
I You may not want to install all development tools on your

target.

I Therefore, cross-compiling toolchains are generally used.
They run on your workstation but generate code for your
target.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 225/742

Definition (2)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 226/742

Machines in build procedures

I Three machines must be distinguished when discussing
toolchain creation

I The build machine, where the toolchain is built.
I The host machine, where the toolchain will be executed.
I The target machine, where the binaries created by the

toolchain are executed.

I Four common build types are possible for toolchains

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 227/742

Different toolchain build procedures

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 228/742

Components

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 229/742

Binutils

I Binutils is a set of tools to generate and manipulate binaries
for a given CPU architecture

I as, the assembler, that generates binary code from assembler
source code

I ld, the linker
I ar, ranlib, to generate .a archives, used for libraries
I objdump, readelf, size, nm, strings, to inspect binaries.

Very useful analysis tools!
I strip, to strip useless parts of binaries in order to reduce their

size

I http://www.gnu.org/software/binutils/

I GPL license

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 230/742

http://www.gnu.org/software/binutils/

Kernel headers (1)

I The C library and compiled
programs needs to interact with
the kernel

I Available system calls and their
numbers

I Constant definitions
I Data structures, etc.

I Therefore, compiling the C library
requires kernel headers, and many
applications also require them.

I Available in <linux/...> and
<asm/...> and a few other
directories corresponding to the
ones visible in include/ in the
kernel sources

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 231/742

Kernel headers (2)

I System call numbers, in <asm/unistd.h>

#define __NR_exit 1

#define __NR_fork 2

#define __NR_read 3

I Constant definitions, here in <asm-generic/fcntl.h>,
included from <asm/fcntl.h>, included from
<linux/fcntl.h>

#define O_RDWR 00000002

I Data structures, here in <asm/stat.h>

struct stat {

unsigned long st_dev;

unsigned long st_ino;

[...]

};

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 232/742

Kernel headers (3)

I The kernel-to-userspace ABI is backward compatible
I Binaries generated with a toolchain using kernel headers older

than the running kernel will work without problem, but won’t
be able to use the new system calls, data structures, etc.

I Binaries generated with a toolchain using kernel headers newer
than the running kernel might work on if they don’t use the
recent features, otherwise they will break

I Using the latest kernel headers is not necessary, unless access
to the new kernel features is needed

I The kernel headers are extracted from the kernel sources using
the headers_install kernel Makefile target.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 233/742

GCC compiler

I GNU C Compiler, the famous free software
compiler

I Can compile C, C++, Ada, Fortran, Java,
Objective-C, Objective-C++, and generate code
for a large number of CPU architectures,
including ARM, AVR, Blackfin, CRIS, FRV,
M32, MIPS, MN10300, PowerPC, SH, v850,
i386, x86 64, IA64, Xtensa, etc.

I http://gcc.gnu.org/

I Available under the GPL license, libraries under
the LGPL.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 234/742

http://gcc.gnu.org/

C library

I The C library is an essential component of
a Linux system

I Interface between the applications and
the kernel

I Provides the well-known standard C API
to ease application development

I Several C libraries are available:
glibc, uClibc, eglibc, dietlibc, newlib, etc.

I The choice of the C library must be made
at the time of the cross-compiling
toolchain generation, as the GCC compiler
is compiled against a specific C library.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 235/742

Cross-compiling toolchains

Obtaining a Toolchain

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 236/742

Building a toolchain manually

Building a cross-compiling toolchain by yourself is a difficult and
painful task! Can take days or weeks!

I Lots of details to learn: many components to build,
complicated configuration

I Lots of decisions to make (such as C library version, ABI,
floating point mechanisms, component versions)

I Need kernel headers and C library sources

I Need to be familiar with current gcc issues and patches on
your platform

I Useful to be familiar with building and configuring tools

I See the Crosstool-NG docs/ directory for details on how
toolchains are built.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 237/742

Get a pre-compiled toolchain

I Solution that many people choose
I Advantage: it is the simplest and most convenient solution
I Drawback: you can’t fine tune the toolchain to your needs

I Determine what toolchain you need: CPU, endianism, C
library, component versions, ABI, soft float or hard float, etc.

I Check whether the available toolchains match your
requirements.

I Possible choices
I Sourcery CodeBench toolchains
I Linaro toolchains
I More references at http://elinux.org/Toolchains

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 238/742

http://elinux.org/Toolchains

Sourcery CodeBench

I CodeSourcery was a a company with an extended expertise on
free software toolchains: gcc, gdb, binutils and glibc. It has
been bought by Mentor Graphics, which continues to provide
similar services and products

I They sell toolchains with support, but they also provide a
”Lite” version, which is free and usable for commercial
products

I They have toolchains available for
I ARM
I MIPS
I PowerPC
I SuperH
I x86

I Be sure to use the GNU/Linux versions. The EABI versions
are for bare-metal development (no operating system)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 239/742

Linaro toolchains

I Linaro contributes to improving mainline gcc on ARM,
in particular by hiring CodeSourcery developers.

I For people who can’t wait for the next releases of gcc,
Linaro releases modified sources of stable releases of
gcc, with these optimizations for ARM (mainly for
recent Cortex A CPUs).

I As any gcc release, these sources can be used by build
tools to build their own binary toolchains (Buildroot,
OpenEmbedded...) This allows to support glibc, uClibc
and eglibc.

I https://wiki.linaro.org/WorkingGroups/ToolChain

I Binary packages are available for Ubuntu users,
https://launchpad.net/~linaro-

maintainers/+archive/toolchain

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 240/742

https://wiki.linaro.org/WorkingGroups/ToolChain
https://launchpad.net/~linaro-maintainers/+archive/toolchain
https://launchpad.net/~linaro-maintainers/+archive/toolchain

Installing and using a pre-compiled toolchain

I Follow the installation procedure proposed by the vendor

I Usually, it is simply a matter of extracting a tarball wherever
you want.

I Then, add the path to toolchain binaries in your PATH:
export PATH=/path/to/toolchain/bin/:$PATH

I Finally, compile your applications
PREFIX-gcc -o foobar foobar.c

I PREFIX depends on the toolchain configuration, and allows to
distinguish cross-compilation tools from native compilation
utilities

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 241/742

Toolchain building utilities

Another solution is to use utilities that automate the process of
building the toolchain

I Same advantage as the pre-compiled toolchains: you don’t
need to mess up with all the details of the build process

I But also offers more flexibility in terms of toolchain
configuration, component version selection, etc.

I They also usually contain several patches that fix known
issues with the different components on some architectures

I Multiple tools with identical principle: shell scripts or Makefile
that automatically fetch, extract, configure, compile and
install the different components

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 242/742

Toolchain building utilities (2)

I Crosstool-ng
I Rewrite of the older Crosstool, with a menuconfig-like

configuration system
I Feature-full: supports uClibc, glibc, eglibc, hard and soft float,

many architectures
I Actively maintained
I http://crosstool-ng.org/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 243/742

http://crosstool-ng.org/

Toolchain building utilities (3)

Many root filesystem building systems also allow the construction
of a cross-compiling toolchain

I Buildroot
I Makefile-based, has a Crosstool-NG back-end, maintained by

the community
I http://www.buildroot.net

I PTXdist
I Makefile-based, uClibc or glibc, maintained mainly by

Pengutronix
I http://www.pengutronix.de/software/ptxdist/index_

en.html

I OpenEmbedded
I The feature-full, but more complicated building system
I http://www.openembedded.org/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 244/742

http://www.buildroot.net
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.pengutronix.de/software/ptxdist/index_en.html
http://www.openembedded.org/

Crosstool-NG: installation and usage

I Installation of Crosstool-NG can be done system-wide, or just
locally in the source directory. For local installation:

./configure --enable-local

make

make install

I Some sample configurations for various architectures are
available in samples, they can be listed using

./ct-ng list-samples

I To load a sample configuration

./ct-ng <sample-name>

I To adjust the configuration

./ct-ng menuconfig

I To build the toolchain

./ct-ng build

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 245/742

Toolchain contents

I The cross compilation tool binaries, in bin/
I This directory can be added to your PATH to ease usage of the

toolchain

I One or several sysroot, each containing
I The C library and related libraries, compiled for the target
I The C library headers and kernel headers

I There is one sysroot for each variant: toolchains can be
multilib if they have several copies of the C library for different
configurations (for example: ARMv4T, ARMv5T, etc.)

I CodeSourcery ARM toolchain are multilib, the sysroots are in
arm-none-linux-gnueabi/libc/,
arm-none-linux-gnueabi/libc/armv4t/,
arm-none-linux-gnueabi/libc/thumb2

I Crosstool-NG toolchains are never multilib, the sysroot is in
arm-unknown-linux-uclibcgnueabi/sysroot

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 246/742

Cross-compiling toolchains

Toolchain Options

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 247/742

ABI

I When building a toolchain, the ABI used to generate binaries
needs to be defined

I ABI, for Application Binary Interface, defines the calling
conventions (how function arguments are passed, how the
return value is passed, how system calls are made) and the
organization of structures (alignment, etc.)

I All binaries in a system must be compiled with the same ABI,
and the kernel must understand this ABI.

I On ARM, two main ABIs: OABI and EABI
I Nowadays everybody uses EABI

I On MIPS, several ABIs: o32, o64, n32, n64

I http://en.wikipedia.org/wiki/Application_Binary_

Interface

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 248/742

http://en.wikipedia.org/wiki/Application_Binary_Interface
http://en.wikipedia.org/wiki/Application_Binary_Interface

Floating point support

I Some processors have a floating point unit, some others do
not.

I For example, many ARMv4 and ARMv5 CPUs do not have a
floating point unit. Since ARMv7, a VFP unit is mandatory.

I For processors having a floating point unit, the toolchain
should generate hard float code, in order to use the floating
point instructions directly

I For processors without a floating point unit, two solutions
I Generate hard float code and rely on the kernel to emulate the

floating point instructions. This is very slow.
I Generate soft float code, so that instead of generating floating

point instructions, calls to a userspace library are generated

I Decision taken at toolchain configuration time

I Also possible to configure which floating point unit should be
used

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 249/742

CPU optimization flags

I A set of cross-compiling tools is specific to a CPU
architecture (ARM, x86, MIPS, PowerPC)

I However, with the -march=, -mcpu=, -mtune= options, one
can select more precisely the target CPU type

I For example, -march=armv7 -mcpu=cortex-a8

I At the toolchain compilation time, values can be chosen.
They are used:

I As the default values for the cross-compiling tools, when no
other -march, -mcpu, -mtune options are passed

I To compile the C library

I Even if the C library has been compiled for armv5t, it doesn’t
prevent from compiling other programs for armv7

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 250/742

Introduction to Android

Introduction to
Android
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 251/742

Introduction to Android

History

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 252/742

Early Years

I Began as a start-up in Palo Alto, CA, USA in 2003

I Focused from the start on software for mobile devices

I Very secretive at the time, even though founders achieved a
lot in the targeted area before founding it

I Finally bought by Google in 2005

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 253/742

Opening Up

I Google announced the Open Handset Alliance in 2007, a
consortium of major actors in the mobile area built around
Android

I Hardware vendors: Intel, Texas Instruments, Qualcomm,
Nvidia, etc.

I Software companies: Google, eBay, etc.
I Hardware manufacturers: Motorola, HTC, Sony Ericsson,

Samsung, etc.
I Mobile operators: T-Mobile, Telefonica, Vodafone, etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 254/742

Android Open Source Project (AOSP)

I At every new version, Google releases its source code through
this project so that community and vendors can work with it.

I One major exception: Honeycomb has not been released
because Google stated that its source code was not clean
enough to release it.

I One can fetch the source code and contribute to it, even
though the development process is very locked by Google

I Only a few devices are supported through AOSP though, only
the two most recent Android development phones, the Panda
board and the Motorola Xoom.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 255/742

Android Releases

I Each new version is given a dessert name

I Released in alphabetical order
I Last releases:

I Android 2.3 Gingerbread
I Android 3.X Honeycomb
I Android 4.0 Ice Cream Sandwich
I Android 4.1 Jelly Bean

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 256/742

Android Versions

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 257/742

Introduction to Android

Features

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 258/742

Features

I All you can expect from a modern mobile OS:
I Application ecosystem, allowing to easily add and remove

applications and publish new features across the entire system
I Support for all the web technologies, with a browser built on

top of the well-established WebKit rendering engine
I Support for hardware accelerated graphics through OpenGL ES
I Support for all the common wireless mechanisms: GSM,

CDMA, UMTS, LTE, Bluetooth, WiFi.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 259/742

Introduction to Android

Architecture

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 260/742

Architecture

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 261/742

The Linux Kernel

I Used as the foundation of the Android system

I Numerous additions from the stock Linux, including new IPC
(Inter-Process Communication) mechanisms, alternative
power management mechanism, new drivers and various
additions across the kernel

I These changes are beginning to go into the staging/ area of
the kernel, as of 3.3, after being a complete fork for a long
time

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 262/742

Android Libraries

I Gather a lot of Android-specific libraries to interact at a
low-level with the system, but third-parties libraries as well

I Bionic is the C library, SurfaceManager is used for drawing
surfaces on the screen, etc.

I But also WebKit, SQLite, OpenSSL coming from the free
software world

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 263/742

Android Runtime

Handles the execution of Android applications

I Almost entirely written from scratch by Google

I Contains Dalvik, the virtual machine that executes every
application that you run on Android, and the core library for
the Java runtime, coming from Apache Harmony project

I Also contains system daemons, init executable, basic binaries,
etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 264/742

Android Framework

I Provides an API for developers to create applications

I Exposes all the needed subsystems by providing an abstraction

I Allows to easily use databases, create services, expose data to
other applications, receive system events, etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 265/742

Android Applications

I AOSP also comes with a set of applications such as the phone
application, a browser, a contact management application, an
email client, etc.

I However, the Google apps and the Android Market app aren’t
free software, so they are not available in AOSP. To obtain
them, you must contact Google and pass a compatibility test.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 266/742

The Android Kernel

Changes
introduced in the
Android Kernel
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 267/742

The Android Kernel

Anonymous Shared Memory
(ashmem)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 268/742

Shared memory mechanism in Linux

I Shared memory is one of the standard IPC mechanisms
present in most OSes

I Under Linux, they are usually provided by the POSIX SHM
mechanism, which is part of the System V IPCs

I ndk/docs/system/libc/SYSV-IPC.html illustrates all the
love Android developers have for these

I The bottom line is that they are flawed by design in Linux,
and lead to code leaking resources, be it maliciously or not

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 269/742

Ashmem

I Ashmem is the response to these flaws
I Notable differences are:

I Reference counting so that the kernel can reclaim resources
which are no longer in use

I There is also a mechanism in place to allow the kernel to
shrink shared memory regions when the system is under
memory pressure.

I The standard use of Ashmem in Android is that a process
opens a shared memory region and share the obtained file
descriptor through Binder.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 270/742

The Android Kernel

Binder

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 271/742

Binder

I RPC/IPC mechanism

I Takes its roots from BeOS and the OpenBinder project, which
some of the current Android engineers worked on

I Adds remote object invocation capabilities to the Linux Kernel

I One of the very basic functionalities of Android. Without it,
Android cannot work.

I Every call to the system servers go through Binder, just like
every communication between applications, and even
communication between the components of a single
application.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 272/742

Binder

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 273/742

The Android Kernel

klogger

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 274/742

Logging

I Logs are very important to debug a system, either live or after
a fault occurred

I In a regular Linux distribution, two components are involved
in the system’s logging:

I Linux’ internal mechanism, accessible with the dmesg

command and holding the output of all the calls to printk()

from various parts of the kernel.
I A syslog daemon, which handles the userspace logs and usually

stores them in the /var/log directory

I From Android developers’ point of view, this approach has
two flaws:

I As the calls to syslog() go through as socket, they generate
expensive task switches

I Every call writes to a file, which probably writes to a slow
storage device or to a storage device where writes are expensive

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 275/742

Logger

I Android addresses these issues with logger, which is a kernel
driver, that uses 4 circular buffers in the kernel memory area.

I The buffers are exposed in the /dev/log directory and you
can access them through the liblog library, which is in turn,
used by the Android system and applications to write to
logger, and by the logcat command to access them.

I This allows to have an extensive level of logging across the
entire AOSP

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 276/742

The Android Kernel

Low Memory Killer

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 277/742

Low Memory Killer

I When the system goes out of memory, Linux throws the OOM
Killer to cleanup memory greedy processes

I However, this behaviour is not predictable at all, and can kill
very important components of a phone (Telephony stack,
Graphic subsystem, etc) instead of low priority processes
(Angry Birds)

I The main idea is to have another process killer, that kicks in
before the OOM Killer and takes into account the time since
the application was last used and the priority of the
component for the system

I It uses various thresholds, so that it first notifies applications
so that they can save their state, then begins to kill
non-critical background processes, and then the foreground
applications

I As it is run to free memory before the OOM Killer, the latter
will never be run, as the system will never run out of memory

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 278/742

The Android Kernel

Various Drivers and Fixes

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 279/742

Various additions

I Android also has a lot of minor features added to the Linux
kernel:

I RAM Console, a RAM-based console that survives a reboot to
hold kernel logs

I pmem, a physically contiguous memory allocator, written
specifically for the HTC G1, to allocate heaps used for 2D
hardware acceleration

I ADB
I YAFFS2
I Timed GPIOs

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 280/742

The Android Kernel

Network Security

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 281/742

Paranoid Network

I In the standard Linux kernel, every application can open
sockets and communicate over the Network

I However, Google was willing to apply a more strict policy with
regard to network access

I Access to the network is a permission, with a per application
granularity

I Filtered with the GID

I You need it to access IP, Bluetooth, raw sockets or RFCOMM

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 282/742

The Android Kernel

Wakelocks

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 283/742

Power management basics

I Every CPU has a few states of power consumption, from
being almost completely off, to working at full capacity.

I These different states are used by the Linux kernel to save
power when the system is run

I For example, when the lid is closed on a laptop, it goes into
“suspend”, which is the most power conservative mode of a
device, where almost nothing but the RAM is kept awake

I While this is a good strategy for a laptop, it is not necessarily
good for mobile devices

I For example, you don’t want your music to be turned off
when the screen is off

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 284/742

Wakelocks

I Android’s answer to these power management constraints is
wakelocks

I One of the most famous Android changes, because of the
flame wars it spawned

I The main idea is instead of letting the user decide when the
devices need to go to sleep, the kernel is set to suspend as
soon and as often as possible.

I In the same time, Android allows applications and kernel
drivers to voluntarily prevent the system from going to
suspend, keeping it awake (thus the name wakelock)

I This implies to write the applications and drivers to use the
wakelock API.

I Applications do so through the abstraction provided by the API
I Drivers must do it themselves, which prevents to directly

submit them to the vanilla kernel

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 285/742

Wakelocks API

I Kernel Space API

#include <linux/wakelock.h>

void wake_lock_init(struct wakelock *lock,

int type,

const char *name);

void wake_lock(struct wake_lock *lock);

void wake_unlock(struct wake_lock *lock);

void wake_lock_timeout(struct wake_lock *lock, long timeout);

void wake_lock_destroy(struct wake_lock *lock);

I User-Space API

$ echo foobar > /sys/power/wake_lock

$ echo foobar > /sys/power/wake_unlock

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 286/742

The Android Kernel

Alarm Timers

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 287/742

The alarm driver

I Once again, the timer mechanisms available in Linux were not
sufficient for the power management policy that Android was
trying to set up

I High Resolution Timers can wake up a process, but don’t fire
when the system is suspended, while the Real Time Clock can
wake up the system if it is suspended, but cannot wake up a
particular process.

I Developed the alarm timers on top of the Real Time Clock
and High Resolution Timers already available in the kernel

I These timers will be fired even if the system is suspended,
waking up the device to do so

I Obviously, to let the application do its job, when the
application is woken up, a wakelock is grabbed

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 288/742

Android Native Layer

Android Native
Layer
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 289/742

Android Native Layer

Bionic

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 290/742

Bionic 1/2

I Google developed another C library for Android: Bionic.
They didn’t start from scratch however, they based their work
on the BSD standard C library.

I The most remarkable thing about Bionic is that it doesn’t
have full support for the POSIX API, so it might be a hurdle
when porting an already developed program to Android.

I Among other things, are lacking:
I Full pthreads API
I No locales and wide chars support
I No openpty(), syslog(), crypt(), functions
I Removed dependency on the /etc/resolv.conf and

/etc/passwd files and using Android’s own mechanisms
instead

I Some functions are still unimplemented (see
getprotobyname()

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 291/742

Bionic 2/2

I However, Bionic has been created this way for a number of
reasons

I Keep the libc implementation as simple as possible, so that it
can be fast and lightweight (Bionic is a bit smaller than uClibc)

I Keep the (L)GPL code out of the userspace. Bionic is under
the BSD license

I And it implements some Android-specifics functions as well:
I Access to system properties
I Logging events in the system logs

I In the prebuilt/ directory, Google provides a prebuilt
toolchain that uses Bionic

I See http://androidxref.com/4.0.4/xref/ndk/docs/

system/libc/OVERVIEW.html for details about Bionic.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 292/742

http://androidxref.com/4.0.4/xref/ndk/docs/system/libc/OVERVIEW.html
http://androidxref.com/4.0.4/xref/ndk/docs/system/libc/OVERVIEW.html

Android Native Layer

Toolbox

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 293/742

Why Toolbox?

I A Linux system needs a basic set of programs to work
I An init program
I A shell
I Various basic utilities for file manipulation and system

configuration

I In normal Linux systems, those programs are provided by
different projects

I coreutils, bash, grep, sed, tar, wget, modutils, etc. are
all different projects

I Many different components to integrate
I Components not designed with embedded systems constraints

in mind: they are not very configurable and have a wide range
of features

I Busybox is an alternative solution, extremely common on
embedded systems

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 294/742

General purpose toolbox: BusyBox

I Rewrite of many useful Unix command line utilities
I Integrated into a single project, which makes it easy to work

with
I Designed with embedded systems in mind: highly configurable,

no unnecessary features

I All the utilities are compiled into a single executable,
/bin/busybox

I Symbolic links to /bin/busybox are created for each
application integrated into Busybox

I For a fairly featureful configuration, less than 500 KB
(statically compiled with uClibc) or less than 1 MB (statically
compiled with glibc).

I http://www.busybox.net/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 295/742

http://www.busybox.net/

BusyBox commands!

Commands available in BusyBox 1.13
[, [[, addgroup, adduser, adjtimex, ar, arp, arping, ash, awk, basename, bbconfig, bbsh,
brctl, bunzip2, busybox, bzcat, bzip2, cal, cat, catv, chat, chattr, chcon, chgrp, chmod,
chown, chpasswd, chpst, chroot, chrt, chvt, cksum, clear, cmp, comm, cp, cpio, crond, crontab,
cryptpw, cttyhack, cut, date, dc, dd, deallocvt, delgroup, deluser, depmod, devfsd, df,
dhcprelay, diff, dirname, dmesg, dnsd, dos2unix, dpkg, dpkg_deb, du, dumpkmap, dumpleases,
e2fsck, echo, ed, egrep, eject, env, envdir, envuidgid, ether_wake, expand, expr, fakeidentd,
false, fbset, fbsplash, fdflush, fdformat, fdisk, fetchmail, fgrep, find, findfs, fold, free,
freeramdisk, fsck, fsck_minix, ftpget, ftpput, fuser, getenforce, getopt, getsebool, getty,
grep, gunzip, gzip, halt, hd, hdparm, head, hexdump, hostid, hostname, httpd, hush, hwclock,
id, ifconfig, ifdown, ifenslave, ifup, inetd, init, inotifyd, insmod, install, ip, ipaddr,
ipcalc, ipcrm, ipcs, iplink, iproute, iprule, iptunnel, kbd_mode, kill, killall, killall5,
klogd, lash, last, length, less, linux32, linux64, linuxrc, ln, load_policy, loadfont,
loadkmap, logger, login, logname, logread, losetup, lpd, lpq, lpr, ls, lsattr, lsmod, lzmacat,
makedevs, man, matchpathcon, md5sum, mdev, mesg, microcom, mkdir, mke2fs, mkfifo, mkfs_minix,
mknod, mkswap, mktemp, modprobe, more, mount, mountpoint, msh, mt, mv, nameif, nc, netstat,
nice, nmeter, nohup, nslookup, od, openvt, parse, passwd, patch, pgrep, pidof, ping, ping6,
pipe_progress, pivot_root, pkill, poweroff, printenv, printf, ps, pscan, pwd, raidautorun,
rdate, rdev, readahead, readlink, readprofile, realpath, reboot, renice, reset, resize,
restorecon, rm, rmdir, rmmod, route, rpm, rpm2cpio, rtcwake, run_parts, runcon, runlevel,
runsv, runsvdir, rx, script, sed, selinuxenabled, sendmail, seq, sestatus, setarch,
setconsole, setenforce, setfiles, setfont, setkeycodes, setlogcons, setsebool, setsid,
setuidgid, sh, sha1sum, showkey, slattach, sleep, softlimit, sort, split, start_stop_daemon,
stat, strings, stty, su, sulogin, sum, sv, svlogd, swapoff, swapon, switch_root, sync, sysctl,
syslogd, tac, tail, tar, taskset, tcpsvd, tee, telnet, telnetd, test, tftp, tftpd, time, top,
touch, tr, traceroute, true, tty, ttysize, tune2fs, udhcpc, udhcpd, udpsvd, umount, uname,
uncompress, unexpand, uniq, unix2dos, unlzma, unzip, uptime, usleep, uudecode, uuencode,
vconfig, vi, vlock, watch, watchdog, wc, wget, which, who, whoami, xargs, yes, zcat, zcip

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 296/742

Toolbox

I As Busybox is under the GPL, Google developed an equivalent
tool, under the BSD license

I Much fewer UNIX commands implemented than Busybox, but
other commands to use the Android-specifics mechanism,
such as alarm, getprop or a modified log

Commands available in Toolbox in Gingerbread
alarm, cat, chmod, chown, cmp, date, dd, df, dmesg, exists, getevent, getprop, hd, id,
ifconfig, iftop, insmod, ioctl, ionice, kill, ln, log, ls, lsmod, lsof, mkdir, mount, mv,
nandread, netstat, newfs_msdos, notify, powerd, printenv, ps, r, readtty, reboot, renice, rm,
rmdir, rmmod, rotatefb, route, schedtop, sendevent, setconsole, setkey, setprop, sleep, smd,
start, stop, sync, syren, top, umount, uptime, vmstat, watchprops, wipe

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 297/742

Android Native Layer

Init

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 298/742

Init

I init is the name of the first userspace program

I It is up to the kernel to start it, with PID 1, and the program
should never exit during system life

I The kernel will look for init at /sbin/init, /bin/init,
/etc/init and /bin/sh. You can tweak that with the init=

kernel parameter

I The role of init is usually to start other applications at boot
time, a shell, mount the various filesystems, etc.

I Init also manages the shutdown of the system by undoing all
it has done at boot time

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 299/742

Android’s init

I Once again, Google has developed his own instead of relying
on an existing one.

I However, it has some interesting features, as it can also be
seen as a daemon on the system

I it manages device hotplugging, with basic permissions rules for
device files, and actions at device plugging and unplugging

I it monitors the services it started, so that if they crash, it can
restart them

I it monitors system properties so that you can take actions
when a particular one is modified

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 300/742

Init part

I For the initialization part, init mounts the various filesystems
(/proc, /sys, data, etc.)

I This allows to have an already setup environment before
taking further actions

I Once this is done, it reads the init.rc file and executes it

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 301/742

init.rc file interpretation

I Uses a unique syntax, based on events

I There usually are several init configuration files, init.rc
itself, and init.<platform_name>.rc

I While init.rc is always taken into account,
init.<platform_name>.rc is only interpreted if the
platform currently running the system reports the same name

I This name is either obtained by reading the file
/proc/cpuinfo or from the androidboot.hardware kernel
parameter

I Most of the customizations should therefore go to the
platform-specific configuration file rather than to the generic
one

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 302/742

Syntax

I Unlike most init script systems, the configuration relies on
system event and system property changes, allowed by the
daemon part of it

I This way, you can trigger actions not only at startup or at
run-level changes like with traditional init systems, but also at
a given time during system life

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 303/742

Actions

on <trigger>

command

command

I Here are a few trigger types:
I boot

I Triggered when init is loaded

I <property>=<value>
I Triggered when the given property is set to the given value

I device-added-<path>
I Triggered when the given device node is added or removed

I service-exited-<name>
I Triggered when the given service exits

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 304/742

Init triggers

I Commands are also specific to Android, with sometimes a
syntax very close to the shell one (just minor differences):

I The complete list of triggers, by execution order is:
I early-init
I init
I early-fs
I fs
I post-fs
I early-boot
I boot

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 305/742

Example

on boot

export PATH /sbin:/system/sbin:/system/bin

export LD_LIBRARY_PATH /system/lib

mkdir /dev

mkdir /proc

mkdir /sys

mount tmpfs tmpfs /dev

mkdir /dev/pts

mkdir /dev/socket

mount devpts devpts /dev/pts

mount proc proc /proc

mount sysfs sysfs /sys

write /proc/cpu/alignment 4

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 306/742

Services

service <name> <pathname> [<argument>]*

<option>

<option>

I Services are like daemons

I They are started by init, managed by it, and can be restarted
when they exit

I Many options, ranging from which user to run the service as,
rebooting in recovery when the service crashes too frequently,
to launching a command at service reboot.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 307/742

Example

on device-added-/dev/compass

start akmd

on device-removed-/dev/compass

stop akmd

service akmd /sbin/akmd

disabled

user akmd

group akmd

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 308/742

Uevent

I Init also manages the runtime events generated by the kernel
when hardware is plugged in or removed, like udev does on a
standard Linux distribution

I This way, it dynamically creates the devices nodes under /dev

I You can also tweak its behavior to add specific permissions to
the files associated to a new event.

I The associated configuration files are /ueventd.rc and
/ueventd.<platform>.rc

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 309/742

ueventd.rc syntax

<path> <permission> <user> <group>

I Example

/dev/bus/usb/* 0660 root usb

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 310/742

Properties

I Init also manages the system properties

I Properties are a way used by Android to share values across
the system that are not changing quite often

I Quite similar to the Windows Registry
I These properties are splitted into several files:

I /system/build.prop which contains the properties generated
by the build system, such as the date of compilation

I /default.prop which contains the default values for certain
key properties, mostly related to the security and permissions
for ADB.

I /data/local.prop which contains various properties specific
to the device

I /data/property is a folder which purpose is to be able to
edit properties at run-time and still have them at the next
reboot. This folder is storing every properties prefixed by
persist. in separate files containing the values.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 311/742

Modifying Properties

I You can add or modify properties in the build system by using
either the PRODUCT_PROPERTY_OVERRIDES makefile variable,
or by defining your own system.prop file in the device
directory. Their content will be appended to
/system/build.prop at compilation time

I Modify the init.rc file so that at boot time it exports these
properties using the setprop command

I Using the API functions such as the Java function
SystemProperties.set

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 312/742

Permissions on the Properties

I Android, by default, only allows any given process to read the
properties.

I You can set write permissions on a particular property or a
group of them using the file
system/core/init/property_service.c

/* White list of permissions for setting property services. */

struct {

const char *prefix;

unsigned int uid;

unsigned int gid;

} property_perms[] = {

{ "net.rmnet0.", AID_RADIO, 0 },

{ "net.dns", AID_RADIO, 0 },

{ "net.", AID_SYSTEM, 0 },

{ "dhcp.", AID_SYSTEM, 0 },

{ "log.", AID_SHELL, 0 },

{ "service.adb.root", AID_SHELL, 0 },

{ "persist.security.", AID_SYSTEM, 0 },

{ NULL, 0, 0 }

};Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 313/742

Special Properties

I ro.* properties are read-only. They can be set only once in
the system life-time. You can only change their value by
modifying the property files and reboot.

I persist.* properties are stored on persistent storage each
time they are set.

I ctl.start and ctl.stop properties used instead of storing
properties to start or stop the service name passed as the new
value

I net.change property holds the name of the last net.*
property changed.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 314/742

Android Native Layer

Various daemons

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 315/742

Vold

I The VOLume Daemon

I Just like init does, monitors new device events

I While init was only creating device files and taking some
configured options, vold actually only cares about storage
devices

I Its roles are to:
I Auto-mount the volumes
I Format the partitions on the device

I There is no /etc/fstab in Android, but
/system/etc/vold.fstab has a somewhat similar role

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 316/742

rild

I rild is the Radio Interface Layer Daemon

I This daemon drives the telephony stack, both voice and data
communication

I When using the voice mode, talks directly to the baseband,
but when issuing data transfers, relies on the kernel network
stack

I It can handle two types of commands:
I Solicited commands: commands that originate from the user:

dial a number, send an SMS, etc.
I Unsolicited commands: commands that come from the

baseband: receiving an SMS, a call, signal strength changed,
etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 317/742

Others

I netd
I netd manages the various network connections: Bluetooth,

Wifi, USB
I Also takes any associated actions: detect new connections, set

up the tethering, etc.
I It really is an equivalent to NetworkManager
I On a security perspective, it also allows to isolate

network-related privileges in a single process

I installd
I Handles package installation and removal
I Also checks package integrity, installs the native libraries on

the system, etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 318/742

Android Native Layer

SurfaceFlinger and PixelFlinger

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 319/742

Introduction to graphical stacks

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 320/742

Compositing window managers

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 321/742

SurfaceFlinger

I This difference in design adds some interesting features:
I Effects are easy to implement, as it’s up to the window

manager to mangle the various surfaces at will to display them
on the screen. Thus, you can add transparency, 3d effects, etc.

I Improved stability. With a regular window manager, a message
is sent to every window to redraw its part of the screen, for
example when a window has been moved. But if an application
fails to redraw, the windows will become glitchy. This will not
happen with a compositing WM, as it will still display the
untouched surface.

I SurfaceFlinger is the compositing window manager in
Android, providing surfaces to applications and rendering all
of them with hardware acceleration.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 322/742

SurfaceFlinger and PixelFlinger

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 323/742

Android Native Layer

Stagefright

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 324/742

Stagefright

I StageFright is the multimedia playback engine in Android
since Eclair

I In its goals, it is quite similar to Gstreamer: Provide an
abstraction on top of codecs and libraries to easily play
multimedia files

I It uses a plugin system, to easily extend the number of
formats supported, either software or hardware decoded

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 325/742

StageFright Architecture

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 326/742

StageFright plugins

I To add support for a new format, you need to:
I Develop a new Extractor class, if the container is not

supported yet.
I Develop a new Decoder class, that implements the interface

needed by the StageFright core to read the data.
I Associate the mime-type of the files to read to your new

Decoder in the OMXCodec.cpp file, in the kDecoderInfo
array.

I → No runtime extension of the decoders, this is done at
compilation time.

static const CodecInfo kDecoderInfo[] = {

{ MEDIA_MIMETYPE_AUDIO_AAC, "OMX.TI.AAC.decode" },

{ MEDIA_MIMETYPE_AUDIO_AAC, "AACDecoder" },

};

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 327/742

Android Native Layer

Dalvik and Zygote

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 328/742

Dalvik

I Dalvik is the virtual machine, executing Android applications

I It is an interpreter written in C/C++, and is designed to be
portable, lightweight and run well on mobile devices

I It is also designed to allow several instances of it to be run at
the same time while consuming as little memory as possible

I Two execution modes
I portable: the interpreter is written in C, quite slow, but

should work on all platforms
I fast: Uses the mterp mechanism, to define routines either in

assembly or in C optimized for a specific platform. Instruction
dispatching is also done by computing the handler address
from the opcode number

I It uses the Apache Harmony Java framework for its core
libraries

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 329/742

Zygote

I Dalvik is started by Zygote

I frameworks/base/cmds/app_process

I At boot, Zygote is started by init, it then
I Initializes a virtual machine in its address space
I Loads all the basic Java classes in memory
I Starts the system server
I Waits for connections on a UNIX socket

I When a new application should be started:
I Android connects to Zygote through the socket to request the

start of a new application
I Zygote forks
I The child process loads the new application and start

executing it

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 330/742

Android Native Layer

Hardware Abstraction Layer

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 331/742

Hardware Abstraction Layers

I Usually, the kernel already provides a HAL for userspace
I However, from Google’s point of view, this HAL is not

sufficient and suffers some restrictions, mostly:
I Depending on the subsystem used in the kernel, the userspace

interface differs
I All the code in the kernel must be GPL-licensed

I Google implemented its HAL with dynamically loaded
userspace libraries

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 332/742

Library naming

I It follows the same naming scheme as for init: the generic
implementation is called libfoo.so and the hardware-specific
one libfoo.hardware.so

I The name of the hardware is looked up with the following
properties:

I ro.hardware
I ro.product.board
I ro.board.platform
I ro.arch

I The libraries are then searched for in the directories:
I /vendor/lib/hw
I /system/lib/hw

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 333/742

Various layers

I Audio (libaudio.so) configuration, mixing, noise
cancellation, etc.

I hardware/libhardware_legacy/include/hardware_

legacy/AudioHardwareInterface.h

I Graphics (gralloc.so, copybit.so, libhgl.so) handles
graphic memory buffer allocations, OpenGL implementation,
etc.

I libhgl.so should be provided by your vendor
I hardware/libhardware/include/gralloc.h
I hardware/libhardware/include/copybit.h

I Camera (libcamera.so) handles the camera functions:
autofocus, take a picture, etc.

I frameworks/base/include/camera/

CameraHardwareInterface.h

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 334/742

Various layers

I GPS (libgps.so) configuration, data acquisition
I hardware/libhardware/include/hardware/gps.h

I Lights (liblights.so) Backlight and LEDs management
I hardware/libhardware/include/lights.h

I Sensors (libsensors.so) handles the various sensors on the
device: Accelerometer, Proximity Sensor, etc.

I hardware/libhardware/include/sensors.h

I Radio Interface (libril-vendor-version.so) manages all
communication between the baseband and rild

I You can set the name of the library with the rild.lib and
rild.libargs properties to find the library

I hardware/ril/include/telephony/ril.h

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 335/742

Example: rild

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 336/742

Android Native Layer

JNI

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 337/742

What is JNI?

I A Java framework to call and be called by native applications
written in other languages

I Mostly used for:
I Writing Java bindings to C/C++ libraries
I Accessing platform-specific features
I Writing high-performance sections

I It is used extensively across the Android userspace to interface
between the Java Framework and the native daemons

I Since Gingerbread, you can develop apps in a purely native
way, possibly calling Java methods through JNI

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 338/742

C Code

#include "jni.h"

JNIEXPORT void JNICALL Java_com_example_Print_print(JNIEnv *env,

jobject obj,

jstring javaString)

{

const char *nativeString = (*env)->GetStringUTFChars(env,

javaString,

0);

printf("%s", nativeString);

(*env)->ReleaseStringUTFChars(env, javaString, nativeString);

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 339/742

JNI arguments

I Function prototypes are following the template:

JNIEXPORT jstring JNICALL Java_ClassName_MethodName

(JNIEnv*, jobject)

I JNIEnv is a pointer to the JNI Environment that we will use
to interact with the virtual machine and manipulate Java
objects within the native methods

I jobject contains a pointer to the calling object. It is very
similar to this in C++

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 340/742

Types

I There is no direct mapping between C Types and JNI types

I You must use the JNI primitives to convert one to his
equivalent

I However, there are a few types that are directly mapped, and
thus can be used directly without typecasting:

Native Type JNI Type

unsigned char jboolean

signed char jbyte

unsigned short jchar

short jshort

long jint

long long jlong

float jfloat

double jdouble

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 341/742

Java Code

package com.example;

class Print

{

private static native void print(String str);

public static void main(String[] args)

{

Print.print("HelloWorld!");

}

static

{

System.loadLibrary("print");

}

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 342/742

Calling a method of a Java object from C

JNIEXPORT void JNICALL Java_ClassName_Method(JNIEnv *env,

jobject obj)

{

jclass cls = (*env)->GetObjectClass(env, obj);

jmethodID hello = (*env)->GetMethodID(env,

cls,

"hello",

"(V)V");

if (!hello)

return;

(*env)->CallVoidMethod(env, obj, hello);

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 343/742

Instantiating a Java object from C

JNIEXPORT jobject JNICALL Java_ClassName_Method(JNIEnv *env,

jobject obj)

{

jclass cls = env->FindClass("java/util/ArrayList");

jmethodID init = env->GetMethodID(cls,

"<init>",

"()V");

jobject array = env->NewObject(cls, init);

return array;

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 344/742

Android Framework and Applications

Android
Framework and
Applications
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 345/742

Android Framework and Applications

Service Manager and Various Services

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 346/742

Whole Android Stack

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 347/742

System Server boot

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 348/742

The first step: system_server.c

I Located in frameworks/base/cmds/system_server

I Started by Zygote through the SystemServer
I Starts all the various native services:

I SurfaceFlinger
I SensorService
I AudioFlinger
I MediaPlayerService
I CameraService
I AudioPolicyService

I It then calls back the SystemServer object’s init2 function to
go on with the initialization

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 349/742

Java Services Initialization

I Located in frameworks/base/services/java/com/

android/server/SystemServer.java

I Starts all the different Java services in a different thread by
registering them into the Service Manager

I PowerManager, ActivityManager (also handles the
ContentProviders), PackageManager, BatteryService,
LightsService, VibratorService, AlarmManager,
WindowManager, BluetoothService,
DevicePolicyManager, StatusBarManager,
InputMethodManager, ConnectivityService,
MountService, NotificationManager, LocationManager,
AudioService, ...

I If you wish to add a new system service, you will need to add
it to one of these two parts to register it at boot time

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 350/742

Android Framework and Applications

Inter-Process Communication, Binder
and AIDLs

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 351/742

IPCs

I On modern systems, each process has its own address space,
allowing to isolate data

I This allows for better stability and security: only a given
process can access its address space. If another process tries
to access it, the kernel will detect it and kill this process.

I However, interactions between processes are sometimes
needed, that’s what IPCs are for.

I On classic Linux systems, several IPC mechanisms are used:
I Signals
I Semaphores
I Sockets
I Message queues
I Pipes
I Shared memory

I Android, however, uses mostly:
I Binder
I Ashmem and Sockets

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 352/742

Binder 1/2

I Uses shared memory for high performance

I Uses reference counting to garbage collect objects no longer in
use

I Data are sent through parcels, which is some kind of
serialization

I Used across the whole system, e.g., clients connect to the
window manager through Binder, which in turn connects to
SurfaceFlinger using Binder

I Each object has an identity, which does not change, even if
you pass it to other processes.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 353/742

Binder 2/2

I This is useful if you want to separate components in distinct
processes, or to manage several components of a single
process (i.e. Activity’s Windows).

I Object identity is also used for security. Some token passed
correspond to specific permissions. Another security model to
enforce permissions is for every transaction to check on the
calling UID.

I Binder also supports one-way and two-way messages

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 354/742

Binder terminology

I The Binder
I The overall Binder Architecture

I Binder Interface
I A well-defined set of methods and properties other can call,

and that should be implemented by a binder

I A Binder
I A particular implementation of a Binder interface

I Binder Object
I An instance of a class that implements a Binder interface

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 355/742

Binder Mechanism

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 356/742

Binder Implementation 1/2

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 357/742

Binder Implementation 2/2

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 358/742

Android Interface Definition Language (AIDL)

I Very similar to any other Interface Definition Language you
might have encountered

I Describes a programming interface for the client and the
server to communicate using IPCs

I Looks a lot like Java interfaces. Several types are already
defined, however, and you can’t extend this like what you can
do in Java:

I All Java primitive types (int, long, boolean, etc.)
I String
I CharSequence
I Parcelable
I List of one of the previous types
I Map

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 359/742

AIDLs HelloWorld

package com.example.android;

interface IRemoteService {

void HelloPrint(String aString);

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 360/742

Parcelable Objects

I If you want to add extra objects to the AIDLs, you need to
make them implement the Parcelable interface

I Most of the relevant Android objects already implement this
interface.

I This is required to let Binder know how to serialize and
deserialize these objects

I However, this is not a general purpose serialization
mechanism. Underlying data structures may evolve, so you
should not store parcelled objects to persistent storage

I Has primitives to store basic types, arrays, etc.

I You can even serialize file descriptors!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 361/742

Implement Parcelable Classes

I To make an object parcelable, you need to:
I Make the object implement the Parcelable interface
I Implement the writeToParcel function, which stores the

current state of the object to a Parcel object
I Add a static field called CREATOR, which implements the

Parcelable.Creator interface, and takes a Parcel,
deserializes the values and returns the object

I Create an AIDL file that declares your new parcelable class

I You should also consider Bundles, that are type-safe
key-value containers, and are optimized for reading and
writing values

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 362/742

Intents

I Intents are a high-level use of Binder

I They describe the intention to do something
I They are used extensively across Android

I Activities, Services and BroadcastReceivers are started using
intents

I Two types of intents:

explicit The developer designates the target by its name
implicit There is no explicit target for the Intent. The

system will find the best target for the Intent by
itself, possibly asking the user what to do if
there are several matches

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 363/742

Android Framework and Applications

Various Java Services

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 364/742

Android Java Services

I There are lots of services implemented in Java in Android

I They abstract most of the native features to make them
available in a consistent way

I You get access to the system services using the
Context.getSystemService() call

I You can find all the accessible services in the documentation
for this function

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 365/742

ActivityManager

I Manages everything related to Android applications
I Starts Activities and Services through Zygote
I Manages their lifecycle
I Fetches content exposed through content providers
I Dispatches the implicit intents
I Adjusts the Low Memory Killer priorities
I Handles non responding applications

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 366/742

PackageManager

I Exposes methods to query and manipulate already installed
packages, so you can:

I Get the list of packages
I Get/Set permissions for a given package
I Get various details about a given application (name, uids, etc)
I Get various resources from the package

I You can even install/uninstall an apk
I installPackage/uninstallPackage functions are hidden in

the source code, yet public.
I You can’t compile code that is calling directly these functions

and they are not documented anywhere except in the code
I But you can call them through the Java Reflection API, if

you have the proper permissions of course

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 367/742

PowerManager

I Abstracts the Wakelocks functionality
I Defines several states, but when a wakelock is grabbed, the

CPU will always be on
I PARTIAL_WAKE_LOCK

I Only the CPU is on, screen and keyboard backlight are off

I SCREEN_DIM_WAKE_LOCK
I Screen backlight is partly on, keyboard backlight is off

I SCREEN_BRIGHT_WAKE_LOCK
I Screen backlight is on, keyboard backlight is off

I FULL_WAKE_LOCK
I Screen and keyboard backlights are on

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 368/742

AlarmManager

I Abstracts the Android timers

I Allows to set a one time timer or a repetitive one

I When a timer expires, the AlarmManager grabs a wakelock,
sends an Intent to the corresponding application and releases
the wakelock once the Intent has been handled

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 369/742

ConnectivityManager and WifiManager

I ConnectivityManager
I Manages the various network connections

I Falls back to other connections when one fails
I Notifies the system when one becomes available/unavailable
I Allows the applications to retrieve various information about

connectivity

I WifiManager
I Provides an API to manage all aspects of WiFi networks

I List, modify or delete already configured networks
I Get information about the current WiFi network if any
I List currently available WiFi networks
I Sends Intents for every change in WiFi state

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 370/742

Example: Vibrator Service

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 371/742

Android Framework and Applications

Extend the framework

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 372/742

Why extend it?

I You might want to extend the existing Android framework to
add new features or allow other applications to use specific
devices available on your hardware

I As you have the code, you could just hack the source to make
the framework suit your needs

I This is quite problematic however:
I You might break the API, introduce bugs, etc
I Google requires you not to modify the Android public API
I It is painful to track changes across the tree, to port the

changes to new versions
I You don’t always want to have such extensions for all your

products

I As usual with Android, there’s a device-specific way of
extending the framework: PlatformLibraries

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 373/742

PlatformLibraries

I The modifications are just plain Java libraries

I You can declare any namespace you want, do whatever code
you want.

I However, they are bundled as raw Java archives, so you
cannot embed resources in the modifications

I If you would still do this, you can add them to
frameworks/base/res, but you have to hide them

I When using the Google Play Store, all the libraries including
these ones are submitted to Google, so that it can filter out
apps relying on libraries not available on your system

I To avoid any application to link to any jar file, you have to
declare both in your application and in your library that you
will use and add a custom library

I The library’s xml permission file should go into the
/system/etc/permissions folder

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 374/742

PlatformLibrary Makefile

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_SRC_FILES := \

$(call all-subdir-java-files)

LOCAL_MODULE_TAGS := optional

LOCAL_MODULE:= com.example.android.pl

include $(BUILD_JAVA_LIBRARY)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 375/742

PlatformLibrary permissions file

<?xml version="1.0" encoding="utf-8"?>

<permissions>

<library name="com.example.android.pl"

file="/system/framework/com.example.android.pl.jar"/>

</permissions>

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 376/742

PlatformLibrary Client Makefile

LOCAL_PATH:= $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE_TAGS := optional

LOCAL_PACKAGE_NAME := PlatformLibraryClient

LOCAL_SRC_FILES := $(call all-java-files-under, src)

LOCAL_JAVA_LIBRARIES := com.example.android.pl

include $(BUILD_PACKAGE)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 377/742

Android Filesystem

Android
Filesystem
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 378/742

Android Filesystem

Contents

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 379/742

Filesystem organization on GNU/Linux

I On most Linux based distributions, the filesystem layout is
defined by the Filesystem Hierarchy Standard

I The FHS defines the main directories and their contents

/bin Essential command binaries
/boot Bootloader files, i.e. kernel images and related

stuff
/etc Host-specific system-wide configuration files.

I Android follows an orthogonal path, storing its files in folders
not present in the FHS, or following it when it uses a defined
folder

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 380/742

Filesystem organization on Android

I Instead, the two main directories used by Android are

/system Immutable directory coming from the original
build. It contains native binaries and libraries,
framework jar files, configuration files, standard
apps, etc.

/data is where all the changing content of the system
are put: apps, data added by the user, data
generated by all the apps at runtime, etc.

I These two directories are usually mounted on separate
partitions, from the root filesystem originating from a kernel
RAM disk.

I Android also uses some usual suspects: /proc, /dev, /sys,
/etc, sbin, /mnt where they serve the same function they
usually do

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 381/742

/system

./app All the pre-installed apps

./bin Binaries installed on the system (toolbox, vold,
surfaceflinger)

./etc Configuration files

./fonts Fonts installed on the system

./framework Jar files for the framework

./lib Shared objects for the system libraries

./modules Kernel modules

./xbin External binaries

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 382/742

Other directories

I Like we said earlier, Android most of the time either uses
directories not in the FHS, or directories with the exact same
purpose as in standard Linux distributions (/dev, /proc),
therefore avoiding collisions. /sys)

I There is some collision though, for /etc and /sbin, which
are hopefully trimmed down

I This allows to have a full Linux distribution side by side with
Android with only minor tweaks

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 383/742

android filesystem config.h

I Located in system/core/include/private/

I Contains the full filesystem setup, and is written as a C
header

I UID/GID
I Permissions for system directories
I Permissions for system files

I Processed at compilation time to enforce the permissions
throughout the filesystem

I Useful in other parts of the framework as well, such as ADB

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 384/742

Android Debug Bridge

Developing and
Debugging with
ADB
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 385/742

Android Debug Bridge

Introduction

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 386/742

ADB

I Usually on embedded devices, debugging and is done either
through a serial port on the device or JTAG for low-level
debugging

I This setup works well when developing a new product that
will have a static system. You develop and debug a system on
a product with serial and JTAG ports, and remove these ports
from the final product.

I For mobile devices, where you will have applications
developers that are not in-house, this is not enough.

I To address that issue, Google developed ADB, that runs on
top of USB, so that another developer can still have
debugging and low-level interaction with a production device.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 387/742

Implementation

I The code is split in 3 components:
I ADBd, the part that runs on the device
I ADB server, which is run on the host, acts as a proxy and

manages the connection to ADBd
I ADB clients, which are also run on the host, and are what is

used to send commands to the device

I ADBd can work either on top of TCP or USB.
I For USB, Google has implemented a driver using the USB

gadget and the USB composite frameworks as it implements
either the ADB protocol and the USB Mass Storage
mechanism.

I For TCP, ADBd just opens a socket

I ADB can also be used as a transport layer between the
development platform and the device, disregarding whether it
uses USB or TCP as underneath layer

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 388/742

ADB Architecture

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 389/742

Android Debug Bridge

Use of ADB

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 390/742

ADB commands: Basics

start-server Starts the ADB server on the host

kill-server Kills the ADB server on the host

devices Lists accessible devices

connect Connects to a remote ADBd using TCP port 5555 by
default

disconnect Disconnects from a connected device

help Prints available commands with help information

version Prints the version number

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 391/742

ADB commands: Files and applications

push Copies a local file to the device

pull Copies a remote file from the device

sync There are three cases here:

I If no argument is passed, copies the local
directories system and data if they differ from
/system and /data on the target.

I If either system or data is passed, syncs this
directory with the associated partition on the
device

I Else, syncs the given folder

install Installs the given Android package (apk) on the
device

uninstall Uninstalls the given package name from the device

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 392/742

ADB commands: Debugging

logcat Prints the device logs. You can filter either on the
source of the logs or their on their priority level

shell Runs a remote shell with a command line interface.
If an argument is given, runs it as a command and
prints out the result

bugreport Gets all the relevant information to generate a bug
report from the device: logs, internal state of the
device, etc.

jdwp Lists the processes that support the JDWP protocol

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 393/742

ADB commands: Scripting 1/2

wait-for-device Blocks until the device gets connected to ADB.
You can also add additional commands to be run
when the device becomes available.

get-state Prints the current state of the device, offline,
bootloader or device

get-serialno Prints the serial number of the device

remount Remounts the /system partition on the device in
read/write mode

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 394/742

ADB commands: Scripting 2/2

reboot Reboots the device. bootloader and recovery

arguments are available to select the operation mode
you want to reboot to.

reboot-bootloader Reboots the device into the bootloader

root Restarts ADBd with root permissions on the device

I Only if the ro.secure property is to 1 to force
ADB into user mode, and ro.debuggable is set
to 1 to allow to restart ADB as root

usb Restarts ADBd listening on USB

tcpip Restarts ADBd listening on TCP on the given port

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 395/742

ADB commands: Easter eggs

lolcat Alias to adb logcat

hell Equivalent to adb shell, with a different color
scheme

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 396/742

Android Debug Bridge

Examples

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 397/742

ADB forward and gdb

adb forward tcp:5555 tcp:1234

See also gdbclient
Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 398/742

ADB forward and jdb

adb forward tcp:5555 jdwp:4242

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 399/742

Various commands

I Wait for a device and install an application
I adb wait-for-device install foobar.apk

I Test an application by sending random user input
I adb shell monkey -v -p com.free-

electrons.foobar 500

I Filter system logs
I adb logcat ActivityManager:I FooBar:D *:S
I You can also set the ANDROID_LOG_TAGS environment variable

on your workstation

I Access other log buffers
I adb logcat -b radio

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 400/742

Android Application Development

Android
Application
Development
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 401/742

Android Application Development

Basics

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 402/742

Android applications

I Android applications are written mostly in Java using Google’s
SDK

I Applications are bundled into an Android PacKage (.apk
files) which are archives containing the compiled code, data
and resources for the application, so applications are
completely self-contained

I You can install applications either through a market (Google
Play Store, Amazon Appstore, F-Droid, etc) or manually
(through ADB or a file manager)

I Of course, everything we have seen so far is mostly here to
provide a nice and unified environment to application
developers

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 403/742

Applications Security

I Once installed, applications live in their own sandbox, isolated
from the rest of the system

I The system assigns a Linux user to every application, so that
every application has its own user/group

I It uses this UID and files permissions to allow the application
to access only its own files

I Each process has its own instance of Dalvik, so code is
running isolated from other applications

I By default, each application runs in its own process, which
will be started/killed during system life

I Android uses the principle of least privilege. Each application
by default has only access to what it requires to work.

I However, you can request extra permissions, make several
applications run in the same process, or with the same UID,
etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 404/742

Applications Components

I Components are the basic blocks of each application

I You can see them as entry points for the system in the
application

I There is four types of components:
I Activities
I Broadcast Receivers
I Content Providers
I Services

I Every application can start any component, even located in
other applications. This allows to share components easily,
and have very little duplication. However, for security reasons,
you start it through an Intent and not directly

I When an application requests a component, the system starts
the process for this application, instantiates the needed class
and runs that component. We can see that there is no single
point of entry in an application like main()

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 405/742

Application Manifest

I To declare the components present in your application, you
have to write a XML file, AndroidManifest.xml

I This file is used to:
I Declare available components
I Declare which permissions these components need
I Revision of the API needed
I Declare hardware features needed
I Libraries required by the components

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 406/742

Manifest HelloWorld

<?xml version="1.0" encoding="utf-8"?>

<manifest package="com.example.android">

<application>

<activity android:name=".ExampleActivity"

android:label="@string/example_label">

<intent-filter>

<action android:name="android.intent.action.MAIN"/>

<category android:name="android.intent.category.LAUNCHER"/>

</intent-filter>

</activity>

<uses-library android:name="com.example.android.pl" />

</application>

</manifest>

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 407/742

NDK

I Google also provides a NDK to allow developers to write
native code

I While the code is not run by Dalvik, the security guarantees
are still there

I Allows to write faster code or to port existing C code to
Android more easily

I Since Gingerbread, you can even code a whole application
without writing a single line of Java

I It is still packaged in an apk, with a manifest, etc.

I However, there are some drawbacks, the main one being that
you can’t access the resources mechanism available from Java

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 408/742

Android Application Development

Activities

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 409/742

Activities

I Activities are a single screen of the user interface of an
application

I They are assembled to provide a consistent interface. If we
take the example of an email application, we will have:

I An activity listing the received mails
I An activity to compose a new mail
I An activity to read a mail

I Other applications might need one of these activities. To
continue with this example, the Camera application might
want to start the composing activity to share the just-shot
picture

I It is up to the application developer to advertise available
activities to the system

I When an activity starts a new activity, the latter replaces the
former on the screen and is pushed on the back stack which
holds the last used activities, so when the user is done with
the newer activity, it can easily go back to the previous one

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 410/742

Back Stack

Credits: http://developer.android.com

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 411/742

http://developer.android.com

Back Stack

Credits: http://developer.android.com

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 412/742

http://developer.android.com

Activity Lifecycle 1/3

I As there is no single entry point and as the system manages
the activities, activities have to define callbacks that the
system can call at some point in time

I Activities can be in one of the three states on Android

Running The activity is on the foreground and has focus
Paused The activity is still visible on the screen but no

longer has focus. It can be destroyed by the
system under very heavy memory pressure

Stopped The activity is no longer visible on the screen. It
can be killed at any time by the system

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 413/742

Activity Lifecycle 2/3

I There are callbacks for every change from one of these states
to another

I The most important ones are onCreate and onPause

I All components of an application run in the same thread. If
you do long operations in the callbacks, you will block the
entire application (UI included). You should always use
threads for every long-running task.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 414/742

Activity Lifecycle 3/3

Credits: http://developer.android.com

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 415/742

http://developer.android.com

Saving Activity State 1/2

I As applications tend to be killed and restarted quite often, we
need a way to store our internal state when killed and reload
it when restarted

I Once again, this is done through callbacks

I Before killing the application, the system calls the
onSaveInstanceState callback and when restarting it, it
calls onRestoreInstanceState

I In both cases, it provides a Bundle as argument to allow the
activity to store what’s needed and reload it later, with little
overhead

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 416/742

Saving Activity State 2/2

I This make the creation/suppression of activities flawless for
the user, while allowing to save as much memory as we need

I These callbacks are not always called though. If the activity is
killed because the user left it in a permanent way (through the
back button), it won’t be called

I By default, these activities are also called when rotating the
device, because the activity will be killed and restarted by the
system to load new resources

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 417/742

Activity Lifecycle

Credits: http://developer.android.com

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 418/742

http://developer.android.com

Activity Callbacks

Credits: http://developer.android.com

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 419/742

http://developer.android.com

Activity HelloWorld

public class ExampleActivity extends Activity {

public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

Log.i("ExampleActivity", "Activity created!");

}

protected void onStart() {

super.onStart();

}

protected void onResume() {

super.onResume();

}

protected void onPause() {

super.onPause();

}

protected void onStop() {

super.onStop();

}

protected void onDestroy() {

super.onDestroy();

}

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 420/742

Android Application Development

Services

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 421/742

Services

I Services are components running in the background

I They are used either to perform long running operations or to
work for remote processes

I A service has no user interface, as it is supposed to run when
the user does something else

I From another component, you can either work with a service
in a synchronous way, by binding to it, or asynchronous, by
starting it

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 422/742

Service Manifest

<?xml version="1.0" encoding="utf-8"?>

<manifest package="com.example.android">

<application>

<service android:name=".ExampleService"/>

</application>

</manifest>

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 423/742

Services Types

I We can see services as a set including:
I Started Services, that are created when other components call

startService. Such a service runs as long as needed,
whether the calling component is still alive or not, and can
stop itself or be stopped. When the service is stopped, it is
destroyed by the system

I You can also subclass IntentService to have a started
service. However, while much easier to implement, this service
will not handle multiple requests simultaneously.

I Bound Services, that are bound to by other components by
calling bindService. They offer a client/server like interface,
interacting with each other. Multiple components can bind to
it, and a service is destroyed only when no more components
are bound to it

I Services can be of both types, given that callbacks for these
two do not overlap completely

I Services are started by passing Intents either to the
startService or bindService commands

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 424/742

Services Lifecycle

Credits: http://developer.android.com

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 425/742

http://developer.android.com

Bound Services

I There are three possible ways to implement a bound service:
I By extending the Binder class. It works only when the clients

are local and run in the same process though.
I By using a Messenger, that will provide the interface for your

service to remote processes. However, it does not perform
multi-threading, all requests are queued up.

I By writing your own AIDL file. You will then be able to
implement your own interface and write thread-safe code, as
you are very likely to receive multiple requests at once

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 426/742

Bound Services and Started Lifecycle

Credits: http://developer.android.com

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 427/742

http://developer.android.com

Android Application Development

Content Providers

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 428/742

Content Providers

I They provide access to organized data in a manner quite
similar to relational databases

I They allow to share data with both internal and external
components and centralize them

I Security is also enforced by permissions like usual, but they
also do not allow remote components to issue arbitrary
requests like what we can do with relational databases

I Instead, Content Providers rely on URIs to allow for a
restricted set of requests with optional parameters, only
permitting the user to filter by values and by columns

I You can use any storage back-end you want, while exposing a
quite neutral and consistent interface to other applications

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 429/742

Content URIs

I URIs are often built with the following pattern:
I content://<package>.provider/<path> to access

particular tables
I content://<package>.provider/<path>/<id> to access

single rows inside the given table

I Facilities are provided to deal with these
I On the application side:

I ContentUri to append and manage numerical IDs in URIs
I Uri.Builder and Uri classes to deal with URIs and strings

I On the provider side:
I UriMatcher associates a pattern to an ID, so that you can

easily match incoming URIs, and use switch over them.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 430/742

Implementing a Content Provider

public class ExampleProvider extends ContentProvider {

private static final UriMatcher sUriMatcher;

static {

sUriMatcher.addURI("com.example.android.provider", "table1", 1);

sUriMatcher.addURI("com.example.android.provider", "table1/#", 2);

}

public Cursor query(Uri uri, String[] projection, String selection,

String[] selectionArgs, String sortOrder) {

switch (sUriMatcher.match(uri)) {

default:

System.out.println("Hello World!");

break;

}

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 431/742

Implementing a Content Provider

public Uri insert(Uri uri, ContentValues values) {

return null;

}

public int update(Uri uri, ContentValues values, String selection,

String[] selectionArgs) {

return 0;

}

public int delete(Uri uri, String selection, String[] selectionArgs) {

return 0;

}

public boolean onCreate() {

return true;

}

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 432/742

Android Application Development

Managing the Intents

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 433/742

Intents

I Intents are basically a bundle of several pieces of information,
mostly

I Component Name
I Contains both the full class name of the target component

plus the package name defined in the Manifest

I Action
I The action to perform or that has been performed

I Data
I The data to act upon, written as a URI, like

tel://0123456789

I Category
I Contains additional information about the nature of the

component that will handle the intent, for example the
launcher or a preference panel

I The component name is optional. If it is set, the intent will
be explicit. Otherwise, the intent will be implicit

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 434/742

Intent Resolution

I When using explicit intents, dispatching is quite easy, as the
target component is explicitly named. However, it is quite rare
that a developer knows the component name of external
applications, so it is mostly used for internal communication.

I Implicit intents are a bit more tricky to dispatch. The system
must find the best candidate for a given intent.

I To do so, components that want to receive intents have to
declare them in their manifests Intent filters, so that the
system knows what components it can respond to.

I Components without intent filters will never receive implicit
intents, only explicit ones

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 435/742

Intent Filters 1/2

I They are only about notifying the system about handled
implicit intents

I Filters are based on matching by category, action and data.
Filtering by only one of these three (by category for example)
is fine.

I A filter can list several actions. If an intent action field
corresponds to one of the actions listed here, the intent will
match

I It can also list several categories. However, if none of the
categories of an incoming intent are listed in the filter, then
intent won’t match.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 436/742

Intent Filters 2/2

I You can also use intent matching from your application by
using the query* methods from the PackageManager to get a
matching component from an Intent.

I For example, the launcher application does that to display
only activities with filters that specify the category
android.intent.category.LAUNCHER and the action
android.intent.action.MAIN

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 437/742

Real Life Manifest Example: Notepad

<manifest package="com.example.android.notepad">

<application android:icon="@drawable/app_notes"

android:label="@string/app_name" >

<activity android:name="NotesList"

android:label="@string/title_notes_list">

<intent-filter>

<action android:name="android.intent.action.MAIN" />

<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>

<intent-filter>

<action android:name="android.intent.action.VIEW" />

<action android:name="android.intent.action.EDIT" />

<action android:name="android.intent.action.PICK" />

<category android:name="android.intent.category.DEFAULT" />

<data android:mimeType="vnd.android.cursor.dir/vnd.google.note" />

</intent-filter>

</activity>

</application>

</manifest>

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 438/742

Broadcasted intents

I Intents can also be broadcast thanks to two functions:
I sendBroadcast that broadcasts an intent that will be handled

by all its handlers at the same time, in an undefined order
I sendOrderedBroadcast broadcasts an intent that will be

handled by one handler at a time, possibly with propagation of
the result to the next handler, or the possibility for a handler
to cancel the broadcast

I Broadcasts are used for system wide notification of important
events: booting has completed, a package has been removed,
etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 439/742

Broadcast Receivers

I Broadcast receivers are the fourth type of components that
can be integrated into an application. They are specifically
designed to deal with broadcast intents.

I Their overall design is quite easy to understand: there is only
one callback to implement: onReceive

I The lifecycle is quite simple too: once the onReceive callback
has returned, the receiver is considered no longer active and
can be destroyed at any moment

I Thus you must not use asynchronous calls (Bind to a service
for example) from the onReceive callback, as there is no way
to be sure that the object calling the callback will still be alive
in the future.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 440/742

Android Application Development

Processes and Threads

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 441/742

Process Management in Android

I By default in Android, every component of a single
application runs in the same process.

I When the system wants to run a new component:
I If the application has no running component yet, the system

will start a new process with a single thread of execution in it
I Otherwise, the component is started within that process

I If you happen to want a component of your application to run
in its own process, you can still do it through the
android:process XML attribute in the manifest.

I When the memory constraints are high, the system might
decide to kill a process to get some memory back. This is done
based on the importance of the process to the user. When a
process is killed, all the components running inside are killed.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 442/742

Processes priority

I Foreground processes have the topmost priority. They host
either

I An activity the user is interacting with
I A service bound to such an activity
I A service running in the foreground (started with

startForeground)
I A service running one of its lifecycle callbacks
I A broadcast receiver running its onReceive method

I Visible processes host
I An activity that is no longer in the foreground but still is

visible on the screen
I A service that is bound to a visible activity

I Service Processes host a service that has been started by
startService

I Background Processes host activities that are no longer visible
to the user

I Empty Processes

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 443/742

Threads

I As there is only one thread of execution, both the application
components and UI interactions are done in sequential order

I So a long computation, I/O, background tasks cannot be run
directly into the main thread without blocking the UI

I If your application is blocked for more than 5 seconds, the
system will display an “Application Not Responding” dialog,
which leads to poor user experience

I Moreover, UI functions are not thread-safe in Android, so you
can only manipulate the UI from the main thread.

I So, you should:
I Dispatch every long operation either to a service or a worker

thread
I Use messages between the main thread and the worker threads

to interact with the UI.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 444/742

Threads in Android

I There are two ways of implementing worker threads in
Android:

I Use the standard Java threads, with a class extending
Runnable

I This works, of course, but you will need to do messaging
between your worker thread and the main thread, either
through handlers or through the View.post function

I Use Android’s AsyncTask
I A class that has four callbacks: doInBackground,

onPostExecute, onPreExecute, onProgressUpdate
I Useful, because only doInBackground is called from a worker

thread, others are called by the UI thread

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 445/742

Android Application Development

Resources

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 446/742

Applications Resources

I Applications contain more than just compiled source code:
images, videos, sound, etc.

I In Android, anything related to the visual appearance of the
application is kept separate from the source code: activities
layout, animations, menus, strings, etc.

I Resources should be kept in the res/ directory of your
application.

I At compilation, the build tool will create a class R, containing
references to all the available resources, and associating an ID
to it

I This mechanism allows you to provide several alternatives to
resources, depending on locales, screen size, pixel density, etc.
in the same application, resolved at runtime.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 447/742

Resources Directory

I All resources are located in the res/ subdirectory
I anim/ contains animation definitions
I color/ contains the color definitions
I drawable/ contains images, ”9-patch” graphics, or XML-files

defining drawables (shapes, widgets, relying on a image file)
I layout/ contains XML defining applications layout
I menu/ contains XML files for the menu layouts
I raw/ contains files that are left untouched
I values/ contains strings, integers, arrays, dimensions, etc
I xml/ contains arbitrary XML files

I All these files are accessed by applications through their IDs.
If you still want to use a file path, you need to use the
assets/ folders

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 448/742

Resources

Credits: http://developer.android.com

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 449/742

http://developer.android.com

Alternative Resources

I Alternative resources are provided using extended sub-folder
names, that should be named using the pattern
<folder_name>-<qualifier>

I There is a number of qualifiers, depending on which case you
want to provide an alternative for. The most used ones are
probably:

I locales (en, fr, fr-rCA, ...)
I screen orientation (land, port)
I screen size (small, large,...)
I screen density (mdpi, ldpi, ...)
I and much others

I You can specify multiple qualifiers by chaining them,
separated by dashes. If you want layouts to be applied only
when on landscape on high density screens, you will save them
into the directory layout-land-hdpi

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 450/742

Resources Selection

Credits: http://developer.android.com

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 451/742

http://developer.android.com

Android Application Development

Data Storage

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 452/742

Data Storage on Android

I An application might need to write to arbitrary files and read
from them, for caching purposes, to make settings persistent,
etc.

I But the system can’t just let you read and write to any
random file on the system, this would be a major security flaw

I Android provides some mechanisms to address the two
following concerns: allow an application to write to files, while
integrating it into the Android security model

I There are four major mechanisms:
I Preferences
I Internal data
I External data
I Databases

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 453/742

Shared Preferences

I Shared Preferences allows to store and retrieve data in a
persistent way

I They are stored using key-value pairs, but can only store basic
types: int, float, string, boolean

I They are persistent, so you don’t have to worry about them
disappearing when the activity is killed

I You can get an instance of the class managing the preferences
through the function getPreferences

I You may also want several set of preferences for your
application and the function getSharedPreferences for that

I You can edit them by calling the method edit on this
instance. Don’t forget to call commit when you’re done!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 454/742

Internal Storage

I You can also save files directly to the internal storage device

I These files are not accessible by default by other applications

I Such files are deleted when the user removes the application

I You can request a FileOutputStream class to such a new
file by calling the method openFileOutput

I You can pass extra flags to this method to either change the
way the file is opened or its permissions

I These files will be created at runtime. If you want to have
files at compile time, use resources instead

I You can also use internal storage for caching purposes. To do
so, call getCacheDir that will return a File object allowing
you to manage the cache folder the way you want to. Cache
files may be deleted by Android when the system is low on
internal storage.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 455/742

External Storage

I External storage is either the SD card or an internal storage
device

I Each file stored on it is world-readable, and the user has direct
access to it, since that is the device exported when USB mass
storage is used.

I Since this storage may be removable, your application should
check for its presence, and that it behaves correctly

I You can either request a sub-folder created only for your
application using the getExternalFilesDir method, with a
tag giving which type of files you want to store in this
directory. This folder will be removed at un-installation.

I Or you can request a public storage space, shared by all
applications, and never removed by the system, using
getExternalStoragePublicDirectory

I You can also use it for caching, with getExternalCacheDir

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 456/742

SQLite Databases

I Databases are often abstracted by Content Providers, that will
abstract requests, but Android adds another layer of
abstraction

I Databases are managed through subclasses of
SQLiteOpenHelper that will abstract the structure of the
database

I It will hold the requests needed to build the tables, views,
triggers, etc. from scratch, as well as requests to migrate to a
newer version of the same database if its structure has to
evolve.

I You can then get an instance of SQLiteDatabase that allows
to query the database

I Databases created that way will be only readable from your
application, and will never be automatically removed by the
system

I You can also manipulate the database using the sqlite3

command in the shell
Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 457/742

Android Application Development

Android Packages (apk)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 458/742

Content of an APK

I META-INF a directory containing all the Java metadata
I MANIFEST.MF the Java Manifest file, containing various

metadata about the classes present in the archive
I CERT.RSA Certificate of the application
I CERT.SF List of resources present in the package and

associated SHA-1 hash

I AndroidManifest.xml

I res contains all the resources, compiled to binary xml for the
relevant resources

I classes.dex contains the compiled Java classes, to the
Dalvik EXecutable format, which is a uncompressed format,
containing Dalvik instructions

I resources.arsc is the resources table. It keeps track of the
package resources, associated IDs and packages

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 459/742

APK Building

Credits: http://developer.android.com

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 460/742

http://developer.android.com

APK Building

Credits: http://developer.android.com

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 461/742

http://developer.android.com

Practical lab - Write an Application with the SDK

I Write an Android application

I Integrate an application in the
Android build system

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 462/742

Advices and Resources

Advices and
Resources
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 463/742

Android Internals

Embedded Android: Porting, Extending, and
Customizing, January 2013 (expected)

I By Karim Yaghmour, O’Reilly

I Should be a good reference book and
guide on all hidden and undocumented
Android internals

I Early version available on-line at O’Reilly

I Our rating: 3 stars

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 464/742

Android Development

Learning Android, March 2011

I By Marko Gargenta, O’Reilly

I A good reference book and guide on
Android application development

I Our rating: 2 stars

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 465/742

Websites

I Android API reference:
http://developer.android.com/reference

I Android Documentation:
http://developer.android.com/guide/

I A good overview on how the various parts of the system are
put together to maintain a highly secure system
http://source.android.com/tech/security/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 466/742

http://developer.android.com/reference
http://developer.android.com/guide/
http://source.android.com/tech/security/

Conferences

Useful conferences featuring Android topics:

I Android Builders Summit:
https://events.linuxfoundation.org/events/

android-builders-summit

Organized by the Linux Foundation in California (in the
Silicon Valley) in early Spring. Many talks about the whole
Android stack. Presentation slides are freely available on the
Linux Foundation website.

I Embedded Linux Conference:
http://embeddedlinuxconference.com/

Organized by the Linux Foundation: California (Silicon Valley,
Spring), in Europe (Fall). Mostly about kernel and userspace
Linux development in general, but always some talks about
Android. Presentation slides freely available

I Don’t miss our free conference videos on http://free-

electrons.com/community/videos/conferences/!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 467/742

https://events.linuxfoundation.org/events/android-builders-summit
https://events.linuxfoundation.org/events/android-builders-summit
http://embeddedlinuxconference.com/
http://free-electrons.com/community/videos/conferences/
http://free-electrons.com/community/videos/conferences/

Embedded Linux driver development

Embedded Linux
driver development
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 468/742

Embedded Linux driver development

Loadable Kernel Modules

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 469/742

Hello Module 1/2

/* hello.c */

#include <linux/init.h>

#include <linux/module.h>

#include <linux/kernel.h>

static int __init hello_init(void)

{

pr_alert("Good morrow");

pr_alert("to this fair assembly.\n");

return 0;

}

static void __exit hello_exit(void)

{

pr_alert("Alas, poor world, what treasure");

pr_alert("hast thou lost!\n");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE("GPL");

MODULE_DESCRIPTION("Greeting module");

MODULE_AUTHOR("William Shakespeare");

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 470/742

Hello Module 2/2

I __init
I removed after initialization (static kernel or module.)

I __exit
I discarded when module compiled statically into the kernel.

I Example available on
http://free-electrons.com/doc/c/hello.c

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 471/742

http://free-electrons.com/doc/c/hello.c

Hello Module Explanations

I Headers specific to the Linux kernel: linux/xxx.h
I No access to the usual C library, we’re doing kernel

programming

I An initialization function
I Called when the module is loaded, returns an error code (0 on

success, negative value on failure)
I Declared by the module_init() macro: the name of the

function doesn’t matter, even though <modulename>_init()

is a convention.

I A cleanup function
I Called when the module is unloaded
I Declared by the module_exit() macro.

I Metadata information declared using MODULE_LICENSE(),
MODULE_DESCRIPTION() and MODULE_AUTHOR()

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 472/742

Symbols Exported to Modules 1/2

I From a kernel module, only a limited number of kernel
functions can be called

I Functions and variables have to be explicitly exported by the
kernel to be visible from a kernel module

I Two macros are used in the kernel to export functions and
variables:

I EXPORT_SYMBOL(symbolname), which exports a function or
variable to all modules

I EXPORT_SYMBOL_GPL(symbolname), which exports a function
or variable only to GPL modules

I A normal driver should not need any non-exported function.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 473/742

Symbols exported to modules 2/2

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 474/742

Module License

I Several usages
I Used to restrict the kernel functions that the module can use if

it isn’t a GPL licensed module
I Difference between EXPORT_SYMBOL() and

EXPORT_SYMBOL_GPL()

I Used by kernel developers to identify issues coming from
proprietary drivers, which they can’t do anything about
(“Tainted” kernel notice in kernel crashes and oopses).

I Useful for users to check that their system is 100% free (check
/proc/sys/kernel/tainted)

I Values
I GPL compatible (see include/linux/license.h: GPL,

GPL v2, GPL and additional rights, Dual MIT/GPL,
Dual BSD/GPL, Dual MPL/GPL

I Proprietary

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 475/742

Compiling a Module

I Two solutions
I Out of tree

I When the code is outside of the kernel source tree, in a
different directory

I Advantage: Might be easier to handle than modifications to
the kernel itself

I Drawbacks: Not integrated to the kernel
configuration/compilation process, needs to be built
separately, the driver cannot be built statically

I Inside the kernel tree
I Well integrated into the kernel configuration/compilation

process
I Driver can be built statically if needed

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 476/742

Compiling an out-of-tree Module 1/2

I The below Makefile should be reusable for any single-file
out-of-tree Linux module

I The source file is hello.c

I Just run make to build the hello.ko file

ifneq ($(KERNELRELEASE),)

obj-m := hello.o

else

KDIR := /path/to/kernel/sources

all:

<tab>$(MAKE) -C $(KDIR) M=‘pwd‘ modules

endif

I For KDIR, you can either set
I full kernel source directory (configured and compiled)
I or just kernel headers directory (minimum needed)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 477/742

Compiling an out-of-tree Module 2/2

I The module Makefile is interpreted with KERNELRELEASE

undefined, so it calls the kernel Makefile, passing the module
directory in the M variable

I the kernel Makefile knows how to compile a module, and
thanks to the M variable, knows where the Makefile for our
module is. The module Makefile is interpreted with
KERNELRELEASE defined, so the kernel sees the obj-m

definition.
Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 478/742

Modules and Kernel Version

I To be compiled, a kernel module needs access to the kernel
headers, containing the definitions of functions, types and
constants.

I Two solutions
I Full kernel sources
I Only kernel headers (linux-headers-* packages in

Debian/Ubuntu distributions)

I The sources or headers must be configured
I Many macros or functions depend on the configuration

I A kernel module compiled against version X of kernel headers
will not load in kernel version Y

I modprobe / insmod will say Invalid module format

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 479/742

New Driver in Kernel Sources 1/2

I To add a new driver to the kernel sources:
I Add your new source file to the appropriate source directory.

Example: drivers/usb/serial/navman.c
I Single file drivers in the common case, even if the file is several

thousand lines of code big. Only really big drivers are split in
several files or have their own directory.

I Describe the configuration interface for your new driver by
adding the following lines to the Kconfig file in this directory:

config USB_SERIAL_NAVMAN

tristate "USB Navman GPS device"

depends on USB_SERIAL

help

To compile this driver as a module, choose M

here: the module will be called navman.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 480/742

New Driver in Kernel Sources 2/2

I Add a line in the Makefile file based on the Kconfig setting:
obj-$(CONFIG_USB_SERIAL_NAVMAN) += navman.o

I It tells the kernel build system to build navman.c when the
USB_SERIAL_NAVMAN option is enabled. It works both if
compiled statically or as a module.

I Run make xconfig and see your new options!
I Run make and your new files are compiled!
I See Documentation/kbuild/ for details and more elaborate

examples like drivers with several source files, or drivers in their
own subdirectory, etc.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 481/742

http://free-electrons.com/kerneldoc/latest/kbuild/

How To Create Linux Patches

I The old school way
I Before making your changes, make sure you have two kernel

trees: cp -a linux-3.5.5/ linux-3.5.5-patch/
I Make your changes in linux-3.5.5-patch/
I Run make distclean to keep only source files.
I Create a patch file: diff -Nur linux-3.5.5/ linux-

3.5.5-patch/ > patchfile
I Not convenient, does not scale to multiple patches

I The new school ways
I Use quilt (tool to manage a stack of patches)
I Use git (revision control system used by the Linux kernel

developers)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 482/742

Hello Module with Parameters 1/2

/* hello_param.c */

#include <linux/init.h>

#include <linux/module.h>

#include <linux/moduleparam.h>

MODULE_LICENSE("GPL");

/* A couple of parameters that can be passed in: how many

times we say hello, and to whom */

static char *whom = "world";

module_param(whom, charp, 0);

static int howmany = 1;

module_param(howmany, int, 0);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 483/742

Hello Module with Parameters 2/2

static int __init hello_init(void)

{

int i;

for (i = 0; i < howmany; i++)

pr_alert("(%d) Hello, %s\n", i, whom);

return 0;

}

static void __exit hello_exit(void)

{

pr_alert("Goodbye, cruel %s\n", whom);

}

module_init(hello_init);

module_exit(hello_exit);

Thanks to Jonathan Corbet for the example!
Example available on
http://free-electrons.com/doc/c/hello_param.c

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 484/742

http://free-electrons.com/doc/c/hello_param.c

Declaring a module parameter

#include <linux/moduleparam.h>

module_param(

name, /* name of an already defined variable */

type, /* either byte, short, ushort, int, uint, long, ulong,

charp, or bool.(checked at compile time!) */

perm /* for /sys/module/<module_name>/parameters/<param>,

0: no such module parameter value file */

);

/* Example */

int irq=5;

module_param(irq, int, S_IRUGO);

Modules parameter arrays are also possible with
module_param_array(), but they are less common.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 485/742

Embedded Linux driver development

Memory Management

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 486/742

Physical and Virtual Memory

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 487/742

Virtual Memory Organization

I 1GB reserved for kernel-space
I Contains kernel code and core data

structures, identical in all address spaces
I Most memory can be a direct mapping

of physical memory at a fixed offset

I Complete 3GB exclusive mapping
available for each user-space process

I Process code and data (program, stack,
...)

I Memory-mapped files
I Not necessarily mapped to physical

memory (demand fault paging used for
dynamic mapping to physical memory
pages)

I Differs from one address space to
another

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 488/742

Physical / virtual memory mapping

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 489/742

Accessing more physical memory

I Only less than 1GB memory addressable directly through
kernel virtual address space

I If more physical memory is present on the platform, part of
the memory will not be accessible by kernel space, but can be
used by user-space

I To allow the kernel to access more physical memory:
I Change 1GB/3GB memory split (2GB/2GB)

(CONFIG_VMSPLIT_3G) ⇒ reduces total memory available for
each process

I Change for a 64 bit architecture ;-) See
Documentation/x86/x86_64/mm.txt for an example.

I Activate highmem support if available for your architecture:
I Allows kernel to map parts of its non-directly accessible

memory
I Mapping must be requested explicitly
I Limited addresses ranges reserved for this usage

I See http://lwn.net/Articles/75174/ for useful
explanations

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 490/742

http://free-electrons.com/kerneldoc/latest/x86/x86_64/mm.txt
http://lwn.net/Articles/75174/

Accessing even more physical memory!

I If your 32 bit platform hosts more than 4GB, they just cannot
be mapped

I PAE (Physical Address Expansion) may be supported by your
architecture

I Adds some address extension bits used to index memory areas

I Allows accessing up to 64 GB of physical memory through
bigger pages (2 MB pages on x86 with PAE)

I Note that each user-space process is still limited to a 3 GB
memory space

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 491/742

Notes on user-space memory

I New user-space memory is allocated either from the already
allocated process memory, or using the mmap system call

I Note that memory allocated may not be physically allocated:
I Kernel uses demand fault paging to allocate the physical page

(the physical page is allocated when access to the virtual
address generates a page fault)

I ... or may have been swapped out, which also induces a page
fault

I User space memory allocation is allowed to over-commit
memory (more than available physical memory) ⇒ can lead to
out of memory

I OOM killer kicks in and selects a process to kill to retrieve
some memory. That’s better than letting the system freeze.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 492/742

Back to kernel memory

I Kernel memory allocators (see following slides) allocate
physical pages, and kernel allocated memory cannot be
swapped out, so no fault handling required for kernel memory.

I Most kernel memory allocation functions also return a kernel
virtual address to be used within the kernel space.

I Kernel memory low-level allocator manages pages. This is the
finest granularity (usually 4 KB, architecture dependent).

I However, the kernel memory management handles smaller
memory allocations through its allocator (see SLAB allocators
– used by kmalloc).

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 493/742

Allocators in the Kernel

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 494/742

Page Allocator

I Appropriate for medium-size allocations

I A page is usually 4K, but can be made greater in some
architectures (sh, mips: 4, 8, 16 or 64 KB, but not
configurable in x86 or arm).

I Buddy allocator strategy, so only allocations of power of two
number of pages are possible: 1 page, 2 pages, 4 pages, 8
pages, 16 pages, etc.

I Typical maximum size is 8192 KB, but it might depend on the
kernel configuration.

I The allocated area is virtually contiguous (of course), but also
physically contiguous. It is allocated in the identity-mapped
part of the kernel memory space.

I This means that large areas may not be available or hard to
retrieve due to physical memory fragmentation.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 495/742

Page Allocator API: Get free pages

I unsigned long get_zeroed_page(int flags)

I Returns the virtual address of a free page, initialized to zero

I unsigned long __get_free_page(int flags)

I Same, but doesn’t initialize the contents

I unsigned long __get_free_pages(int flags,

unsigned int order)

I Returns the starting virtual address of an area of several
contiguous pages in physical RAM, with order being
log2(number_of_pages).Can be computed from the size
with the get_order() function.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 496/742

Page Allocator API: Free Pages

I void free_page(unsigned long addr)

I Frees one page.

I void free_pages(unsigned long addr,

unsigned int order)

I Frees multiple pages. Need to use the same order as in
allocation.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 497/742

Page Allocator Flags

I The most common ones are:
I GFP_KERNEL

I Standard kernel memory allocation. The allocation may block
in order to find enough available memory. Fine for most
needs, except in interrupt handler context.

I GFP_ATOMIC
I RAM allocated from code which is not allowed to block

(interrupt handlers or critical sections). Never blocks, allows
to access emergency pools, but can fail if no free memory is
readily available.

I GFP_DMA
I Allocates memory in an area of the physical memory usable

for DMA transfers.

I Others are defined in include/linux/gfp.h

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 498/742

SLAB Allocator 1/2

I The SLAB allocator allows to create caches, which contains a
set of objects of the same size

I The object size can be smaller or greater than the page size

I The SLAB allocator takes care of growing or reducing the size
of the cache as needed, depending on the number of allocated
objects. It uses the page allocator to allocate and free pages.

I SLAB caches are used for data structures that are present in
many many instances in the kernel: directory entries, file
objects, network packet descriptors, process descriptors, etc.

I See /proc/slabinfo

I They are rarely used for individual drivers.

I See include/linux/slab.h for the API

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 499/742

SLAB Allocator 2/2

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 500/742

Different SLAB Allocators

I There are three different, but API compatible,
implementations of a SLAB allocator in the Linux kernel. A
particular implementation is chosen at configuration time.

I SLAB: original, well proven allocator in Linux 2.6.
I SLOB: much simpler. More space efficient but doesn’t scale

well. Saves a few hundreds of KB in small systems (depends
on CONFIG_EXPERT)

I SLUB: the new default allocator since 2.6.23, simpler than
SLAB, scaling much better (in particular for huge systems)
and creating less fragmentation.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 501/742

kmalloc Allocator

I The kmalloc allocator is the general purpose memory allocator
in the Linux kernel, for objects from 8 bytes to 128 KB

I For small sizes, it relies on generic SLAB caches, named
kmalloc-XXX in /proc/slabinfo

I For larger sizes, it relies on the page allocator

I The allocated area is guaranteed to be physically contiguous

I The allocated area size is rounded up to the next power of
two size (while using the SLAB allocator directly allows to
have more flexibility)

I It uses the same flags as the page allocator (GFP_KERNEL,
GFP_ATOMIC, GFP_DMA, etc.) with the same semantics.

I Should be used as the primary allocator unless there is a
strong reason to use another one.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 502/742

kmalloc API 1/2

I #include <linux/slab.h>

I void *kmalloc(size_t size, int flags);

I Allocate size bytes, and return a pointer to the area (virtual
address)

I size: number of bytes to allocate
I flags: same flags as the page allocator

I void kfree (const void *objp);

I Free an allocated area

I Example: (drivers/infiniband/core/cache.c)

struct ib_update_work *work;

work = kmalloc(sizeof *work, GFP_ATOMIC);

...

kfree(work);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 503/742

kmalloc API 2/2

I void *kzalloc(size_t size, gfp_t flags);

I Allocates a zero-initialized buffer

I void *kcalloc(size_t n, size_t size, gfp_t flags);

I Allocates memory for an array of n elements of size size, and
zeroes its contents.

I void *krealloc(const void *p, size_t new_size,

gfp_t flags);

I Changes the size of the buffer pointed by p to new_size, by
reallocating a new buffer and copying the data, unless
new_size fits within the alignment of the existing buffer.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 504/742

vmalloc Allocator

I The vmalloc allocator can be used to obtain virtually
contiguous memory zones, but not physically contiguous. The
requested memory size is rounded up to the next page.

I The allocated area is in the kernel space part of the address
space, but outside of the identically-mapped area

I Allocations of fairly large areas is possible, since physical
memory fragmentation is not an issue, but areas cannot be
used for DMA, as DMA usually requires physically contiguous
buffers.

I API in include/linux/vmalloc.h
I void *vmalloc(unsigned long size);

I Returns a virtual address

I void vfree(void *addr);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 505/742

Kernel memory debugging

I Debugging features available since 2.6.31
I Kmemcheck

I Dynamic checker for access to uninitialized memory.
I Only available on x86 so far (Linux 3.6 status), but will help

to improve architecture independent code anyway.
I See Documentation/kmemcheck.txt for details.

I Kmemleak
I Dynamic checker for memory leaks
I This feature is available for all architectures.
I See Documentation/kmemleak.txt for details.

I Both have a significant overhead. Only use them in
development!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 506/742

http://free-electrons.com/kerneldoc/latest/kmemcheck.txt
http://free-electrons.com/kerneldoc/latest/kmemleak.txt

Embedded Linux driver development

Useful general-purpose kernel APIs

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 507/742

Memory/string utilities

I In linux/string.h
I Memory-related: memset, memcpy, memmove, memscan,

memcmp, memchr
I String-related: strcpy, strcat, strcmp, strchr, strrchr,

strlen and variants
I Allocate and copy a string: kstrdup, kstrndup
I Allocate and copy a memory area: kmemdup

I In linux/kernel.h
I String to int conversion: simple_strtoul, simple_strtol,

simple_strtoull, simple_strtoll
I Other string functions: sprintf, sscanf

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 508/742

Linked lists

I Convenient linked-list facility in linux/list.h
I Used in thousands of places in the kernel

I Add a struct list_head member to the structure whose
instances will be part of the linked list. It is usually named
node when each instance needs to only be part of a single list.

I Define the list with the LIST_HEAD macro for a global list, or
define a struct list_head element and initialize it with
INIT_LIST_HEAD for lists embedded in a structure.

I Then use the list_*() API to manipulate the list
I Add elements: list_add(), list_add_tail()
I Remove, move or replace elements: list_del(),

list_move(), list_move_tail(), list_replace()
I Test the list: list_empty()
I Iterate over the list: list_for_each_*() family of macros

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 509/742

Linked Lists Examples (1)

I From include/linux/atmel_tc.h

/*

* Definition of a list element, with a

* struct list_head member

*/

struct atmel_tc

{

/* some members */

struct list_head node;

};

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 510/742

Linked Lists Examples (2)

I From drivers/misc/atmel_tclib.c

/* Define the global list */

static LIST_HEAD(tc_list);

static int __init tc_probe(struct platform_device *pdev) {

struct atmel_tc *tc;

tc = kzalloc(sizeof(struct atmel_tc), GFP_KERNEL);

/* Add an element to the list */

list_add_tail(&tc->node, &tc_list);

}

struct atmel_tc *atmel_tc_alloc(unsigned block, const char *name)

{

struct atmel_tc *tc;

/* Iterate over the list elements */

list_for_each_entry(tc, &tc_list, node) {

/* Do something with tc */

}

[...]

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 511/742

Embedded Linux driver development

I/O Memory and Ports

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 512/742

Port I/O vs. Memory-Mapped I/O

I MMIO
I Same address bus to address memory and I/O devices
I Access to the I/O devices using regular instructions
I Most widely used I/O method across the different architectures

supported by Linux

I PIO
I Different address spaces for memory and I/O devices
I Uses a special class of CPU instructions to access I/O devices
I Example on x86: IN and OUT instructions

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 513/742

MMIO vs PIO

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 514/742

Requesting I/O ports

I Tells the kernel which driver is using which I/O ports

I Allows to prevent other drivers from using the same I/O ports,
but is purely voluntary.

I struct resource *request_region(

unsigned long start,

unsigned long len,

char *name);

I Tries to reserve the given region and returns NULL if
unsuccessful.

I request_region(0x0170, 8, "ide1");

I void release_region(

unsigned long start,

unsigned long len);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 515/742

/proc/ioports example (x86)

0000-001f : dma1

0020-0021 : pic1

0040-0043 : timer0

0050-0053 : timer1

0070-0077 : rtc

0080-008f : dma page reg

00a0-00a1 : pic2

00c0-00df : dma2

00f0-00ff : fpu

0170-0177 : ide1

01f0-01f7 : ide0

0376-0376 : ide1

03f6-03f6 : ide0

03f8-03ff : serial

0800-087f : 0000:00:1f.0

...

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 516/742

Accessing I/O ports

I Functions to read/write bytes (b), word (w) and longs (l) to
I/O ports:

I unsigned in[bwl](unsigned port)

I void out[bwl](value, unsigned long port)

I And the strings variants: often more efficient than the
corresponding C loop, if the processor supports such
operations!

I void ins[bwl](unsigned port, void *addr,

unsigned long count)

I void outs[bwl](unsigned port, void *addr,

unsigned long count)

I Examples
I read 8 bits

I oldlcr = inb(baseio + UART_LCR)

I write 8 bits
I outb(MOXA_MUST_ENTER_ENCHANCE, baseio + UART_LCR)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 517/742

Requesting I/O memory

I Functions equivalent to request_region() and
release_region(), but for I/O memory.

I struct resource *request_mem_region(

unsigned long start,

unsigned long len,

char *name);

I void release_mem_region(

unsigned long start,

unsigned long len);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 518/742

/proc/iomem example

00000000-0009efff : System RAM

0009f000-0009ffff : reserved

000a0000-000bffff : Video RAM area

000c0000-000cffff : Video ROM

000f0000-000fffff : System ROM

00100000-3ffadfff : System RAM

00100000-0030afff : Kernel code

0030b000-003b4bff : Kernel data

3ffae000-3fffffff : reserved

40000000-400003ff : 0000:00:1f.1

40001000-40001fff : 0000:02:01.0

40400000-407fffff : PCI CardBus #03

40800000-40bfffff : PCI CardBus #03

a0000000-a0000fff : pcmcia_socket0

e8000000-efffffff : PCI Bus #01

...

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 519/742

Mapping I/O memory in virtual memory

I Load/store instructions work with virtual addresses

I To access I/O memory, drivers need to have a virtual address
that the processor can handle, because I/O memory is not
mapped by default in virtual memory.

I The ioremap function satisfies this need:

#include <asm/io.h>

void *ioremap(unsigned long phys_addr,

unsigned long size);

void iounmap(void *address);

I Caution: check that ioremap doesn’t return a NULL address!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 520/742

ioremap()

ioremap(0xFFEBC00, 4096) = 0xCDEFA000

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 521/742

Accessing MMIO devices

I Directly reading from or writing to addresses returned by
ioremap (pointer dereferencing) may not work on some
architectures.

I To do PCI-style, little-endian accesses, conversion being done
automatically

unsigned read[bwl](void *addr);

void write[bwl](unsigned val, void *addr);

I To do raw access, without endianness conversion

unsigned __raw_read[bwl](void *addr);

void __raw_write[bwl](unsigned val, void *addr);

I Example
I 32 bits write

__raw_writel(1 << KS8695_IRQ_UART_TX,

membase + KS8695_INTST);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 522/742

New API for mixed accesses

I A new API allows to write drivers that can work on either
devices accessed over PIO or MMIO. A few drivers use it, but
there doesn’t seem to be a consensus in the kernel community
around it.

I Mapping
I For PIO: ioport_map() and ioport_unmap(). They don’t

really map, but they return a special iomem cookie.
I For MMIO: ioremap() and iounmap(). As usual.

I Access, works both on addresses or cookies returned by
ioport_map() and ioremap()

I ioread[8/16/32]() and iowrite[8/16/32] for single access
I ioread[8/16/32]_rep() and iowrite[8/16/32]_rep() for

repeated accesses

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 523/742

Avoiding I/O access issues

I Caching on I/O ports or memory already disabled

I Use the macros, they do the right thing for your architecture
I The compiler and/or CPU can reorder memory accesses,

which might cause troubles for your devices is they expect one
register to be read/written before another one.

I Memory barriers are available to prevent this reordering
I rmb() is a read memory barrier, prevents reads to cross the

barrier
I wmb() is a write memory barrier
I mb() is a read-write memory barrier

I Starts to be a problem with CPUs that reorder instructions
and SMP.

I See Documentation/memory-barriers.txt for details

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 524/742

http://free-electrons.com/kerneldoc/latest/memory-barriers.txt

/dev/mem

I Used to provide user-space applications with direct access to
physical addresses.

I Usage: open /dev/mem and read or write at given offset.
What you read or write is the value at the corresponding
physical address.

I Used by applications such as the X server to write directly to
device memory.

I On x86, arm, tile, powerpc, unicore32, s390:
CONFIG_STRICT_DEVMEM option to restrict /dev/mem
non-RAM addresses, for security reasons (Linux 3.6 status).

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 525/742

Embedded Linux driver development

Character drivers

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 526/742

Usefulness of character drivers

I Except for storage device drivers, most drivers for devices with
input and output flows are implemented as character drivers.

I So, most drivers you will face will be character drivers.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 527/742

Creating a Character Driver 1/2

I User-space needs
I The name of a device file in /dev to interact with the device

driver through regular file operations (open, read, write,
close...)

I The kernel needs
I To know which driver is in charge of device files with a given

major / minor number pair
I For a given driver, to have handlers (file operations) to execute

when user-space opens, reads, writes or closes the device file.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 528/742

Creating a Character Driver 2/2

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 529/742

Implementing a character driver

I Four major steps
I Implement operations corresponding to the system calls an

application can apply to a file: file operations
I Define a file_operations structure associating function

pointers to their implementation in your driver
I Reserve a set of major and minors for your driver
I Tell the kernel to associate the reserved major and minor to

your file operations

I This is a very common design scheme in the Linux kernel
I A common kernel infrastructure defines a set of operations to

be implemented by a driver and functions to register your
driver

I Your driver only needs to implement this set of well-defined
operations

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 530/742

File operations 1/3

I Before registering character devices, you have to define
file_operations (called fops) for the device files.

I The file_operations structure is generic to all files handled
by the Linux kernel. It contains many operations that aren’t
needed for character drivers.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 531/742

File operations 2/3

I Here are the most important operations for a character driver.
All of them are optional.

struct file_operations {

ssize_t (*read) (struct file *, char __user *,

size_t, loff_t *);

ssize_t (*write) (struct file *, const char __user *,

size_t, loff_t *);

long (*unlocked_ioctl) (struct file *, unsigned int,

unsigned long);

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);

int (*release) (struct inode *, struct file *);

};

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 532/742

open() and release()

I int foo_open(struct inode *i, struct file *f)

I Called when user-space opens the device file.
I inode is a structure that uniquely represent a file in the

system (be it a regular file, a directory, a symbolic link, a
character or block device)

I file is a structure created every time a file is opened. Several
file structures can point to the same inode structure.

I Contains information like the current position, the opening
mode, etc.

I Has a void *private_data pointer that one can freely use.
I A pointer to the file structure is passed to all other operations

I int foo_release(struct inode *i, struct file *f)

I Called when user-space closes the file.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 533/742

read()

I ssize_t foo_read(struct file *f, __user char *buf,

size_t sz, loff_t *off)

I Called when user-space uses the read() system call on the
device.

I Must read data from the device, write at most sz bytes in the
user-space buffer buf, and update the current position in the
file off. f is a pointer to the same file structure that was
passed in the open() operation

I Must return the number of bytes read.
I On UNIX, read() operations typically block when there isn’t

enough data to read from the device

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 534/742

write()

I ssize_t foo_write(struct file *f,

__user const char *buf, size_t sz, loff_t *off)

I Called when user-space uses the write() system call on the
device

I The opposite of read, must read at most sz bytes from buf,
write it to the device, update off and return the number of
bytes written.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 535/742

Exchanging data with user-space 1/3

I Kernel code isn’t allowed to directly access user-space
memory, using memcpy or direct pointer dereferencing

I Doing so does not work on some architectures
I If the address passed by the application was invalid, the

application would segfault.

I To keep the kernel code portable and have proper error
handling, your driver must use special kernel functions to
exchange data with user-space.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 536/742

Exchanging data with user-space 2/3

I A single value
I get_user(v, p);

I The kernel variable v gets the value pointed by the user-space
pointer p

I put_user(v, p);
I The value pointed by the user-space pointer p is set to the

contents of the kernel variable v.

I A buffer
I unsigned long copy_to_user(void __user *to,

const void *from, unsigned long n);

I unsigned long copy_from_user(void *to,

const void __user *from, unsigned long n);

I The return value must be checked. Zero on success, non-zero
on failure. If non-zero, the convention is to return -EFAULT.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 537/742

Exchanging data with user-space 3/3

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 538/742

Zero copy access to user memory

I Having to copy data to our from an intermediate kernel buffer
is expensive.

I Zero copy options are possible:
I mmap() system call to allow user space to directly access

memory mapped I/O space (covered in the mmap() section).
I get_user_pages() to get a mapping to user pages without

having to copy them. See http://j.mp/oPW6Fb (Kernel API
doc). This API is more complex to use though.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 539/742

http://j.mp/oPW6Fb

Read Operation Example

static ssize_t

acme_read(struct file *file, char __user * buf, size_t count, loff_t * ppos)

{

/* The acme_buf address corresponds to a device I/O memory area */

/* of size acme_bufsize, obtained with ioremap() */

int remaining_size, transfer_size;

remaining_size = acme_bufsize - (int)(*ppos);

/* bytes left to transfer */

if (remaining_size == 0) {

/* All read, returning 0 (End Of File) */

return 0;

}

/* Size of this transfer */

transfer_size = min_t(int, remaining_size, count);

if (copy_to_user

(buf /* to */ , acme_buf + *ppos /* from */ , transfer_size)) {

return -EFAULT;

} else { /* Increase the position in the open file */

*ppos += transfer_size;

return transfer_size;

}

}

Piece of code available at
http://free-electrons.com/doc/c/acme.c

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 540/742

http://free-electrons.com/doc/c/acme.c

Write Operation Example

static ssize_t

acme_write(struct file *file, const char __user *buf, size_t count,

loff_t *ppos)

{

int remaining_bytes;

/* Number of bytes not written yet in the device */

remaining_bytes = acme_bufsize - (*ppos);

if (count > remaining_bytes) {

/* Can’t write beyond the end of the device */

return -EIO;

}

if (copy_from_user(acme_buf + *ppos /*to*/ , buf /*from*/ , count)) {

return -EFAULT;

} else {

/* Increase the position in the open file */

*ppos += count;

return count;

}

}

Piece of code available at
http://free-electrons.com/doc/c/acme.c

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 541/742

http://free-electrons.com/doc/c/acme.c

unlocked ioctl()

I long unlocked_ioctl(struct file *f,

unsigned int cmd, unsigned long arg)

I Associated to the ioctl() system call.
I Called unlocked because it didn’t hold the Big Kernel Lock

(gone now).
I Allows to extend the driver capabilities beyond the limited

read/write API.
I For example: changing the speed of a serial port, setting video

output format, querying a device serial number...
I cmd is a number identifying the operation to perform
I arg is the optional argument passed as third argument of the

ioctl() system call. Can be an integer, an address, etc.
I The semantic of cmd and arg is driver-specific.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 542/742

ioctl() example: kernel side

static long phantom_ioctl(struct file *file, unsigned int cmd,

unsigned long arg)

{

struct phm_reg r;

void __user *argp = (void __user *)arg;

switch (cmd) {

case PHN_SET_REG:

if (copy_from_user(&r, argp, sizeof(r)))

return -EFAULT;

/* Do something */

break;

case PHN_GET_REG:

if (copy_to_user(argp, &r, sizeof(r)))

return -EFAULT;

/* Do something */

break;

default:

return -ENOTTY;

}

return 0; }

Selected excerpt from drivers/misc/phantom.c

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 543/742

Ioctl() Example: Application Side

int main(void)

{

int fd, ret;

struct phm_reg reg;

fd = open("/dev/phantom");

assert(fd > 0);

reg.field1 = 42;

reg.field2 = 67;

ret = ioctl(fd, PHN_SET_REG, & reg);

assert(ret == 0);

return 0;

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 544/742

File Operations Definition: Example 3/3

I Defining a file_operations structure:

#include <linux/fs.h>

static struct file_operations acme_fops =

{

.owner = THIS_MODULE,

.read = acme_read,

.write = acme_write,

};

I You just need to supply the functions you implemented!
Defaults for other functions (such as open, release...) are
fine if you do not implement anything special.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 545/742

dev t data type

I Kernel data type to represent a major / minor number pair
I Also called a device number.
I Defined in linux/kdev_t.h
I 32 bit size (major: 12 bits, minor: 20 bits)
I Macro to compose the device number

I MKDEV(int major, int minor);

I Macro to extract the minor and major numbers:
I MAJOR(dev_t dev);
I MINOR(dev_t dev);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 546/742

Registering device numbers 1/2

#include <linux/fs.h>

int register_chrdev_region(

dev_t from, /* Starting device number */

unsigned count, /* Number of device numbers */

const char *name); /* Registered name */

Returns 0 if the allocation was successful.
Example

static dev_t acme_dev = MKDEV(202, 128);

if (register_chrdev_region(acme_dev, acme_count, "acme")) {

pr_err("Failed to allocate device number\n");

...

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 547/742

Registering device numbers 2/2

I If you don’t have fixed device numbers assigned to your driver
I Better not to choose arbitrary ones. There could be conflicts

with other drivers.
I The kernel API offers an alloc_chrdev_region function to

have the kernel allocate free ones for you. You can find the
allocated major number in /proc/devices.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 548/742

Information on registered devices: /proc/devices

Character devices:

1 mem

4 tty

4 ttyS

5 /dev/tty

5 /dev/console

...

Block devices:

1 ramdisk

7 loop

8 sd

9 md

11 sr

179 mmc

254 mdp

...Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 549/742

Character device registration 1/2

I The kernel represents character drivers with a cdev structure

I Declare this structure globally (within your module):

#include <linux/cdev.h>

static struct cdev acme_cdev;

I In the init function, initialize the structure:

cdev_init(&acme_cdev, &acme_fops);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 550/742

Character device registration 2/2

I Then, now that your structure is ready, add it to the system:

int cdev_add(

struct cdev *p, /* Character device structure */

dev_t dev, /* Starting device major/minor */

unsigned count); /* Number of devices */

I After this function call, the kernel knows the association
between the major/minor numbers and the file operations.
Your device is ready to be used!

I Example (continued):

if (cdev_add(&acme_cdev, acme_dev, acme_count)) {

printk (KERN_ERR "Char driver registration failed\n");

...

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 551/742

Character device unregistration

I First delete your character device
I void cdev_del(struct cdev *p);

I Then, and only then, free the device number
I void unregister_chrdev_region(dev_t from,

unsigned count);

I Example (continued):

cdev_del(&acme_cdev);

unregister_chrdev_region(acme_dev, acme_count);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 552/742

Linux error codes

I The kernel convention for error management is
I Return 0 on success
I Return a negative error code on failure

I Error codes
I include/asm-generic/errno-base.h
I include/asm-generic/errno.h

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 553/742

Char driver example summary 1/4

static void *acme_buf;

static int acme_bufsize = 8192;

static int acme_count = 1;

static dev_t acme_dev = MKDEV(202, 128);

static struct cdev acme_cdev;

static ssize_t acme_read(...) {...}

static ssize_t acme_write(...) {...}

static const struct file_operations acme_fops = {

.owner = THIS_MODULE,

.read = acme_read,

.write = acme_write,

};

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 554/742

Char driver example summary 2/4

static int __init acme_init(void)

{

int err;

acme_buf = ioremap(ACME_PHYS, acme_bufsize);

if (!acme_buf) {

err = -ENOMEM;

goto err_exit;

}

if (register_chrdev_region(acme_dev, acme_count, "acme")) {

err = -ENODEV;

goto err_free_buf;

}

cdev_init(&acme_cdev, &acme_fops);

if (cdev_add(&acme_cdev, acme_dev, acme_count)) {

err = -ENODEV;

goto err_dev_unregister;

}

return 0;

err_dev_unregister:

unregister_chrdev_region(acme_dev, acme_count);

err_free_buf:

iounmap(acme_buf);

err_exit:

return err;

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 555/742

Character Driver Example Summary 3/4

static void __exit acme_exit(void)

{

cdev_del(&acme_cdev);

unregister_chrdev_region(acme_dev, acme_count);

iounmap(acme_buf);

}

module_init(acme_init);

module_exit(acme_exit);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 556/742

Character Driver Example Summary 4/4

I Kernel: character device writer
I Define the file operations callbacks for the device file: read,

write, ioctl, ...
I In the module init function, reserve major and minor numbers

with register_chrdev_region(), init a cdev structure with
your file operations and add it to the system with cdev_add().

I User-space: system administration
I Load the character driver module
I Create device files with matching major and minor numbers if

needed. The device file is ready to use!

I User-space: system user
I Open the device file, read, write, or send ioctl’s to it.

I Kernel
I Executes the corresponding file operations

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 557/742

Embedded Linux driver development

Processes and scheduling

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 558/742

Process, thread?

I Confusion about the terms process, thread and task
I In Unix, a process is created using fork() and is composed of

I An address space, which contains the program code, data,
stack, shared libraries, etc.

I One thread, that starts executing the main() function.
I Upon creation, a process contains one thread

I Additional threads can be created inside an existing process,
using pthread_create()

I They run in the same address space as the initial thread of the
process

I They start executing a function passed as argument to
pthread_create()

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 559/742

Process, thread: kernel point of view

I The kernel represents each thread running in the system by a
structure of type task_struct

I From a scheduling point of view, it makes no difference
between the initial thread of a process and all additional
threads created dynamically using pthread_create()

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 560/742

A thread life

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 561/742

Execution of system calls

The execution of system calls takes place in the context of the
thread requesting them.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 562/742

Embedded Linux driver development

Sleeping

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 563/742

Sleeping

Sleeping is needed when a process (user space or kernel space) is
waiting for data.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 564/742

How to sleep 1/3

I Must declare a wait queue
I A wait queue will be used to store the list of threads waiting

for an event
I Static queue declaration

I useful to declare as a global variable
I DECLARE_WAIT_QUEUE_HEAD(module_queue);

I Or dynamic queue declaration
I Useful to embed the wait queue inside another data structure

wait_queue_head_t queue;

init_waitqueue_head(&queue);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 565/742

How to sleep 2/3

I Several ways to make a kernel process sleep
I void wait_event(queue, condition);

I Sleeps until the task is woken up and the given C expression is
true. Caution: can’t be interrupted (can’t kill the user-space
process!)

I int wait_event_killable(queue, condition);

I Can be interrupted, but only by a fatal signal (SIGKILL).
Returns -ERESTARSYS if interrupted.

I int wait_event_interruptible(queue, condition);

I Can be interrupted by any signal. Returns -ERESTARTSYS if
interrupted.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 566/742

How to sleep 3/3

I int wait_event_timeout(queue, condition, timeout);

I Also stops sleeping when the task is woken up and the timeout
expired. Returns 0 if the timeout elapsed, non-zero if the
condition was met.

I int wait_event_interruptible_timeout(queue,

condition, timeout);

I Same as above, interruptible. Returns 0 if the timeout elapsed,
-ERESTARTSYS if interrupted, positive value if the condition
was met.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 567/742

How to Sleep - Example

ret = wait_event_interruptible

(sonypi_device.fifo_proc_list,

kfifo_len(sonypi_device.fifo) != 0);

if (ret)

return ret;

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 568/742

Waking up!

I Typically done by interrupt handlers when data sleeping
processes are waiting for becomes available.

I wake_up(&queue);
I Wakes up all processes in the wait queue

I wake_up_interruptible(&queue);
I Wakes up all processes waiting in an interruptible sleep on the

given queue

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 569/742

Exclusive vs. non-exclusive

I wait_event_interruptible() puts a task in a
non-exclusive wait.

I All non-exclusive tasks are woken up by wake_up() /
wake_up_interruptible()

I wait_event_interruptible_exclusive() puts a task in
an exclusive wait.

I wake_up() / wake_up_interruptible() wakes up all
non-exclusive tasks and only one exclusive task

I wake_up_all() / wake_up_interruptible_all() wakes up
all non-exclusive and all exclusive tasks

I Exclusive sleeps are useful to avoid waking up multiple tasks
when only one will be able to “consume” the event.

I Non-exclusive sleeps are useful when the event can “benefit”
to multiple tasks.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 570/742

Sleeping and Waking up - Implementation 1/2

I The scheduler doesn’t keep evaluating the sleeping condition!

#define __wait_event(wq, condition) \

do { \

DEFINE_WAIT(__wait); \

\

for (;;) { \

prepare_to_wait(&wq, &__wait, \

TASK_UNINTERRUPTIBLE); \

if (condition) \

break; \

schedule(); \

} \

finish_wait(&wq, &__wait); \

} while (0)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 571/742

Sleeping and Waking up - Implementation 2/2

I wait_event_interruptible(queue, condition);

I The process is put in the TASK_INTERRUPTIBLE state.

I wake_up_interruptible(&queue);

I All processes waiting in queue are woken up, so they get
scheduled later and have the opportunity to reevaluate the
condition.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 572/742

Embedded Linux driver development

Interrupt Management

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 573/742

Registering an interrupt handler 1/2

I Defined in include/linux/interrupt.h
I int request_irq(unsigned int irq,

irq_handler_t handler, unsigned long irq_flags,

const char *devname, void *dev_id);

I irq is the requested IRQ channel
I handler is a pointer to the IRQ handler
I irq_flags are option masks (see next slide)
I devname is the registered name
I dev_id is a pointer to some data. It cannot be NULL as it is

used as an identifier for free_irq when using shared IRQs.

I void free_irq(unsigned int irq, void *dev_id);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 574/742

Registering an interrupt handler 2/2

I Main irq_flags bit values (can be combined, none is fine
too)

I IRQF_SHARED
I The interrupt channel can be shared by several devices.

Requires a hardware status register telling whether an IRQ
was raised or not.

I IRQF_SAMPLE_RANDOM
I Use the IRQ arrival time to feed the kernel random number

generator.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 575/742

Interrupt handler constraints

I No guarantee in which address space the system will be in
when the interrupt occurs: can’t transfer data to and from
user space

I Interrupt handler execution is managed by the CPU, not by
the scheduler. Handlers can’t run actions that may sleep,
because there is nothing to resume their execution. In
particular, need to allocate memory with GFP_ATOMIC.

I Interrupt handlers are run with all interrupts disabled (since
2.6.36). Therefore, they have to complete their job quickly
enough, to avoiding blocking interrupts for too long.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 576/742

/proc/interrupts on a Panda board

CPU0 CPU1

39: 4 0 GIC TWL6030-PIH

41: 0 0 GIC l3-dbg-irq

42: 0 0 GIC l3-app-irq

43: 0 0 GIC prcm

44: 20294 0 GIC DMA

52: 0 0 GIC gpmc

...

IPI0: 0 0 Timer broadcast interrupts

IPI1: 23095 25663 Rescheduling interrupts

IPI2: 0 0 Function call interrupts

IPI3: 231 173 Single function call interrupts

IPI4: 0 0 CPU stop interrupts

LOC: 196407 136995 Local timer interrupts

Err: 0

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 577/742

Interrupt handler prototype

I irqreturn_t foo_interrupt(int irq, void *dev_id)

I irq, the IRQ number
I dev_id, the opaque pointer that was passed to

request_irq()

I Return value
I IRQ_HANDLED: recognized and handled interrupt
I IRQ_NONE: not on a device managed by the module. Useful to

share interrupt channels and/or report spurious interrupts to
the kernel.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 578/742

Typical interrupt handler’s job

I Acknowledge the interrupt to the device (otherwise no more
interrupts will be generated, or the interrupt will keep firing
over and over again)

I Read/write data from/to the device

I Wake up any waiting process waiting for the completion of an
operation, typically using wait queues
wake_up_interruptible(&module_queue);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 579/742

Threaded interrupts

I In 2.6.30, support for threaded interrupts has been added to
the Linux kernel

I The interrupt handler is executed inside a thread.
I Allows to block during the interrupt handler, which is often

needed for I2C/SPI devices as the interrupt handler needs to
communicate with them.

I Allows to set a priority for the interrupt handler execution,
which is useful for real-time usage of Linux

I int request_threaded_irq(unsigned int irq,

irq_handler_t handler, irq_handler_t thread_fn,

unsigned long flags, const char *name, void *dev);

I handler, “hard IRQ” handler
I thread_fn, executed in a thread

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 580/742

Top half and bottom half processing

I Splitting the execution of interrupt handlers in 2 parts
I Top half

I This is the real interrupt handler, which should complete as
quickly as possible since all interrupts are disabled. If possible,
take the data out of the device and schedule a bottom half to
handle it.

I Bottom half
I Is the general Linux name for various mechanisms which allow

to postpone the handling of interrupt-related work.
Implemented in Linux as softirqs, tasklets or workqueues.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 581/742

Top half and bottom half diagram

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 582/742

Softirqs

I Softirqs are a form of bottom half processing

I The softirqs handlers are executed with all interrupts enabled,
and a given softirq handler can run simultaneously on multiple
CPUs

I They are executed once all interrupt handlers have completed,
before the kernel resumes scheduling processes, so sleeping is
not allowed.

I The number of softirqs is fixed in the system, so softirqs are
not directly used by drivers, but by complete kernel
subsystems (network, etc.)

I The list of softirqs is defined in
include/linux/interrupt.h: HI, TIMER, NET_TX, NET_RX,
BLOCK, BLOCK_IOPOLL, TASKLET, SCHED, HRTIMER, RCU

I The HI and TASKLET softirqs are used to execute tasklets

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 583/742

Tasklets

I Tasklets are executed within the HI and TASKLET softirqs.
They are executed with all interrupts enabled, but a given
tasklet is guaranteed to execute on a single CPU at a time.

I A tasklet can be declared statically with the
DECLARE_TASKLET() macro or dynamically with the
tasklet_init() function. A tasklet is simply implemented
as a function. Tasklets can easily be used by individual device
drivers, as opposed to softirqs.

I The interrupt handler can schedule the execution of a tasklet
with

I tasklet_schedule() to get it executed in the TASKLET

softirq
I tasklet_hi_schedule() to get it executed in the HI softirq

(higher priority)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 584/742

Tasklet Example: simplified atmel serial.c 1/2

/* The tasklet function */

static void atmel_tasklet_func(unsigned long data) {

struct uart_port *port = (struct uart_port *)data;

[...]

}

/* Registering the tasklet */

init function(...) {

[...]

tasklet_init(&atmel_port->tasklet,

atmel_tasklet_func,(unsigned long)port);

[...]

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 585/742

Tasklet Example: simplified atmel serial.c 2/2

/* Removing the tasklet */

cleanup function(...) {

[...]

tasklet_kill(&atmel_port->tasklet);

[...]

}

/* Triggering execution of the tasklet */

somewhere function(...) {

tasklet_schedule(&atmel_port->tasklet);

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 586/742

Workqueues

I Workqueues are a general mechanism for deferring work. It is
not limited in usage to handling interrupts.

I The function registered as workqueue is executed in a thread,
which means:

I All interrupts are enabled
I Sleeping is allowed

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 587/742

Workqueues

I To create a task statically, you can use:
DECLARE_WORK(name, void (*function)(void *), void

*data);

or dynamically:
INIT_WORK(struct work_struct *work, void

(*function)(void *), void *data);

PREPARE_WORK(struct work_struct *work, void

(*function)(void *), void *data);

I You can then submit your work to the shared queue using:
int schedule_work(struct work_struct *work);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 588/742

Workqueues

I You can also create your own threads:
struct workqueue_struct *create_workqueue(const

char *name);

struct workqueue_struct *create_singlethread_

workqueue(const char *name);

I Tosubmit your work int those threads, use:
int queue_work(struct workqueue_struct *queue,

struct work_struct *work);

int queue_delayed_work(struct workqueue_struct

*queue, struct work_struct *work, unsigned long

delay);

I The complete API, in include/linux/workqueue.h

provides many other possibilities (creating its own workqueue
threads, etc.)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 589/742

Interrupt management summary

I Device driver
I When the device file is first opened, register an interrupt

handler for the device’s interrupt channel.

I Interrupt handler
I Called when an interrupt is raised.
I Acknowledge the interrupt
I If needed, schedule a tasklet taking care of handling data.

Otherwise, wake up processes waiting for the data.

I Tasklet
I Process the data
I Wake up processes waiting for the data

I Device driver
I When the device is no longer opened by any process,

unregister the interrupt handler.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 590/742

Embedded Linux driver development

Concurrent Access to Resources

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 591/742

Sources of concurrency issues

I In terms of concurrency, the kernel has the same constraint as
a multi-threaded program: its state is global and visible in all
executions contexts

I Concurrency arises because of
I Interrupts, which interrupts the current thread to execute an

interrupt handler. They may be using shared resources.
I Kernel preemption, if enabled, causes the kernel to switch from

the execution of one system call to another. They may be
using shared resources.

I Multiprocessing, in which case code is really executed in
parallel on different processors, and they may be using shared
resources as well.

I The solution is to keep as much local state as possible and for
the shared resources, use locking.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 592/742

Concurrency protection with locks

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 593/742

Linux mutexes

I The kernel’s main locking primitive

I The process requesting the lock blocks when the lock is
already held. Mutexes can therefore only be used in contexts
where sleeping is allowed.

I Mutex definition:
I #include <linux/mutex.h>

I Initializing a mutex statically:
I DEFINE_MUTEX(name);

I Or initializing a mutex dynamically:
I void mutex_init(struct mutex *lock);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 594/742

Locking and Unlocking Mutexes 1/2

I void mutex_lock(struct mutex *lock);

I Tries to lock the mutex, sleeps otherwise.
I Caution: can’t be interrupted, resulting in processes you

cannot kill!

I int mutex_lock_killable(struct mutex *lock);

I Same, but can be interrupted by a fatal (SIGKILL) signal. If
interrupted, returns a non zero value and doesn’t hold the
lock. Test the return value!!!

I int mutex_lock_interruptible(struct mutex *lock);

I Same, but can be interrupted by any signal.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 595/742

Locking and Unlocking Mutexes 2/2

I int mutex_trylock(struct mutex *lock);

I Never waits. Returns a non zero value if the mutex is not
available.

I int mutex_is_locked(struct mutex *lock);

I Just tells whether the mutex is locked or not.

I void mutex_unlock(struct mutex *lock);

I Releases the lock. Do it as soon as you leave the critical
section.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 596/742

Spinlocks

I Locks to be used for code that is not allowed to sleep
(interrupt handlers), or that doesn’t want to sleep (critical
sections). Be very careful not to call functions which can
sleep!

I Originally intended for multiprocessor systems
I Spinlocks never sleep and keep spinning in a loop until the

lock is available.
I Spinlocks cause kernel preemption to be disabled on the CPU

executing them.
I The critical section protected by a spinlock is not allowed to

sleep.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 597/742

Initializing Spinlocks

I Statically
I DEFINE_SPINLOCK(my_lock);

I Dynamically
I void spin_lock_init(spinlock_t *lock);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 598/742

Using Spinlocks 1/2

I Several variants, depending on where the spinlock is called:
I void spin_lock(spinlock_t *lock);

I void spin_unlock(spinlock_t *lock);

I Doesn’t disable interrupts. Used for locking in process context
(critical sections in which you do not want to sleep).

I void spin_lock_irqsave(spinlock_t *lock,

unsigned long flags);

I void spin_unlock_irqrestore(spinlock_t *lock,

unsigned long flags);

I Disables / restores IRQs on the local CPU.
I Typically used when the lock can be accessed in both process

and interrupt context, to prevent preemption by interrupts.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 599/742

Using Spinlocks 2/2

I void spin_lock_bh(spinlock_t *lock);

I void spin_unlock_bh(spinlock_t *lock);

I Disables software interrupts, but not hardware ones.
I Useful to protect shared data accessed in process context and

in a soft interrupt (bottom half).
I No need to disable hardware interrupts in this case.

I Note that reader / writer spinlocks also exist.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 600/742

Spinlock example

I Spinlock structure embedded into uart_port

struct uart_port {

spinlock_t lock;

/* Other fields */

};

I Spinlock taken/released with protection against interrupts

static unsigned int ulite_tx_empty

(struct uart_port *port) {

unsigned long flags;

spin_lock_irqsave(&port->lock, flags);

/* Do something */

spin_unlock_irqrestore(&port->lock, flags);

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 601/742

Deadlock Situations

I They can lock up your system. Make sure they never happen!
I Don’t call a function that can try to get access to the same

lock

I Holding multiple locks is risky!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 602/742

Kernel lock validator

I From Ingo Molnar and Arjan van de Ven
I Adds instrumentation to kernel locking code
I Detect violations of locking rules during system life, such as:

I Locks acquired in different order (keeps track of locking
sequences and compares them).

I Spinlocks acquired in interrupt handlers and also in process
context when interrupts are enabled.

I Not suitable for production systems but acceptable overhead in
development.

I See Documentation/lockdep-design.txt for details

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 603/742

http://free-electrons.com/kerneldoc/latest/lockdep-design.txt

Alternatives to Locking

I As we have just seen, locking can have a strong negative
impact on system performance. In some situations, you could
do without it.

I By using lock-free algorithms like Read Copy Update (RCU).
I RCU API available in the kernel (See

http://en.wikipedia.org/wiki/RCU).
I When available, use atomic operations.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 604/742

http://en.wikipedia.org/wiki/RCU

Atomic Variables 1/2

I Useful when the shared resource is an integer value
I Even an instruction like n++ is not guaranteed to be atomic

on all processors!
I Atomic operations definitions

I #include <asm/atomic.h>

I atomic_t
I Contains a signed integer (at least 24 bits)

I Atomic operations (main ones)
I Set or read the counter:

I void atomic_set(atomic_t *v, int i);

I int atomic_read(atomic_t *v);

I Operations without return value:
I void atomic_inc(atomic_t *v);

I void atomic_dec(atomic_t *v);

I void atomic_add(int i, atomic_t *v);

I void atomic_sub(int i, atomic_t *v);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 605/742

Atomic Variables 2/2

I Similar functions testing the result:
I int atomic_inc_and_test(...);

I int atomic_dec_and_test(...);

I int atomic_sub_and_test(...);

I Functions returning the new value:
I int atomic_inc_return(...);

I int atomic_dec_return(...);

I int atomic_add_return(...);

I int atomic_sub_return(...);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 606/742

Atomic Bit Operations

I Supply very fast, atomic operations

I On most platforms, apply to an unsigned long type.

I Apply to a void type on a few others.
I Set, clear, toggle a given bit:

I void set_bit(int nr, unsigned long * addr);

I void clear_bit(int nr, unsigned long * addr);

I void change_bit(int nr, unsigned long * addr);

I Test bit value:
I int test_bit(int nr, unsigned long *addr);

I Test and modify (return the previous value):
I int test_and_set_bit(...);

I int test_and_clear_bit(...);

I int test_and_change_bit(...);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 607/742

Embedded Linux driver development

Debugging and tracing

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 608/742

Debugging Using Messages

I Three APIs are available
I The old printk(), no longer recommended for new debugging

messages
I The pr_*() family of functions: pr_emerg(), pr_alert(),

pr_crit(), pr_err(), pr_warning(), pr_notice(),
pr_info(), pr_cont() and the special pr_debug()

I They take a classic format string with arguments
I defined in include/linux/printk.h

I The dev_*() family of functions: dev_emerg(),
dev_alert(), dev_crit(), dev_err(), dev_warning(),
dev_notice(), dev_info() and the special dev_dbg()

I They take a pointer to struct device as first argument
(covered later), and then a format string with arguments

I defined in include/linux/device.h
I To be used in drivers integrated with the Linux device model

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 609/742

pr debug() and dev dbg()

I When the driver is compiled with DEBUG defined, all those
messages are compiled and printed at the debug level. DEBUG

can be defined by #define DEBUG at the beginning of the
driver, or using ccflags-$(CONFIG_DRIVER) += -DDEBUG

in the Makefile

I When the kernel is compiled with CONFIG_DYNAMIC_DEBUG,
then those messages can dynamically be enabled on a per-file,
per-module or per-message basis

I See Documentation/dynamic-debug-howto.txt for details
I Very powerful feature to only get the debug messages you’re

interested in.

I When DEBUG is not defined and CONFIG_DYNAMIC_DEBUG is
not enabled, those messages are not compiled in.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 610/742

http://free-electrons.com/kerneldoc/latest/dynamic-debug-howto.txt

Configuring The Priority

I Each message is associated to a priority, ranging from 0 for
emergency to 7 for debug.

I All the messages, regardless of their priority, are stored in the
kernel log ring buffer

I Typically accessed using the dmesg command

I Some of the messages may appear on the console, depending
on their priority and the configuration of

I The loglevel kernel parameter, which defines the priority
above which messages are displayed on the console. See
Documentation/kernel-parameters.txt for details.

I The value of /proc/sys/kernel/printk, which allows to
change at runtime the priority above which messages are
displayed on the console. See
Documentation/sysctl/kernel.txt for details.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 611/742

http://free-electrons.com/kerneldoc/latest/kernel-parameters.txt
http://free-electrons.com/kerneldoc/latest/sysctl/kernel.txt

DebugFS

I A virtual filesystem to export debugging information to
user-space.

I Kernel configuration: DEBUG_FS
I Kernel hacking -> Debug Filesystem

I The debugging interface disappears when Debugfs is
configured out.

I You can mount it as follows:
I sudo mount -t debugfs none /sys/kernel/debug

I First described on http://lwn.net/Articles/115405/
I API documented in the Linux Kernel Filesystem API:

I Documentation/DocBook/filesystems/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 612/742

http://lwn.net/Articles/115405/
http://free-electrons.com/kerneldoc/latest/DocBook/filesystems/

DebugFS API

I Create a sub-directory for your driver:
I struct dentry *debugfs_create_dir(const char *name,

struct dentry *parent);

I u for decimal representation
I x for hexadecimal representation

I Expose an integer as a file in DebugFS:
I struct dentry *debugfs_create_{u,x}{8,16,32}

(const char *name, mode_t mode, struct dentry *parent,

u8 *value);

I Expose a binary blob as a file in DebugFS:
I struct dentry *debugfs_create_blob(const char *name,

mode_t mode, struct dentry *parent,

struct debugfs_blob_wrapper *blob);

I Also possible to support writable DebugFS files or customize
the output using the more generic debugfs_create_file()

function.
Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 613/742

Deprecated Debugging Mechanisms

I Some additional debugging mechanisms, whose usage is now
considered deprecated

I Adding special ioctl() commands for debugging purposes.
DebugFS is preferred.

I Adding special entries in the proc filesystem. DebugFS is
preferred.

I Adding special entries in the sysfs filesystem. DebugFS is
preferred.

I Using printk(). The pr_*() and dev_*() functions are
preferred.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 614/742

Using Magic SysRq

I Allows to run multiple debug / rescue commands even when
the kernel seems to be in deep trouble

I On PC: [Alt] + [SysRq] + <character>
I On embedded: break character on the serial line +

<character>

I Example commands:
I n: makes RT processes nice-able.
I t: shows the kernel stack of all sleeping processes
I w: shows the kernel stack of all running processes
I b: reboot the system
I You can even register your own!

I Detailed in Documentation/sysrq.txt

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 615/742

http://free-electrons.com/kerneldoc/latest/sysrq.txt

kgdb - A Kernel Debugger

I The execution of the kernel is fully controlled by gdb from
another machine, connected through a serial line.

I Can do almost everything, including inserting breakpoints in
interrupt handlers.

I Feature supported for the most popular CPU architectures

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 616/742

Using kgdb 1/2

I Details available in the kernel documentation:
Documentation/DocBook/kgdb/

I Recommended to turn on CONFIG_FRAME_POINTER to aid in
producing more reliable stack backtraces in gdb.

I You must include a kgdb I/O driver. One of them is kgdb

over serial console (kgdboc: kgdb over console, enabled by
CONFIG_KGDB_SERIAL_CONSOLE)

I Configure kgdboc at boot time by passing to the kernel:
I kgdboc=<tty-device>,<bauds>.
I For example: kgdboc=ttyS0,115200

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 617/742

http://free-electrons.com/kerneldoc/latest/DocBook/kgdb/

Using kgdb 2/2

I Then also pass kgdbwait to the kernel: it makes kgdb wait
for a debugger connection.

I Boot your kernel, and when the console is initialized, interrupt
the kernel with Alt + SyrRq + g.

I On your workstation, start gdb as follows:
I gdb ./vmlinux
I (gdb) set remotebaud 115200
I (gdb) target remote /dev/ttyS0

I Once connected, you can debug a kernel the way you would
debug an application program.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 618/742

Debugging with a JTAG Interface

I Two types of JTAG dongles
I Those offering a gdb compatible interface, over a serial port or

an Ethernet connexion. gdb can directly connect to them.
I Those not offering a gdb compatible interface are generally

supported by OpenOCD (Open On Chip Debugger):
http://openocd.sourceforge.net/

I OpenOCD is the bridge between the gdb debugging language
and the JTAG-dongle specific language

I See the very complete documentation: http://openocd.

sourceforge.net/documentation/online-docs/
I For each board, you’ll need an OpenOCD configuration file

(ask your supplier)

I See very useful details on using Eclipse / gcc / gdb /
OpenOCD on Windows (similar usage):

I http://www2.amontec.com/sdk4arm/ext/jlynch-

tutorial-20061124.pdf
I http://www.yagarto.de/howto/yagarto2/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 619/742

http://openocd.sourceforge.net/
http://openocd.sourceforge.net/documentation/online-docs/
http://openocd.sourceforge.net/documentation/online-docs/
http://www2.amontec.com/sdk4arm/ext/jlynch-tutorial-20061124.pdf
http://www2.amontec.com/sdk4arm/ext/jlynch-tutorial-20061124.pdf
http://www.yagarto.de/howto/yagarto2/

More Kernel Debugging Tips

I Enable CONFIG_KALLSYMS_ALL
I General Setup -

> Configure standard kernel features
I To get oops messages with symbol names instead of raw

addresses
I This obsoletes the ksymoops tool

I If your kernel doesn’t boot yet or hangs without any message,
you can activate the low-level debugging option
(Kernel Hacking section, only available on arm and
unicore32): CONFIG_DEBUG_LL=y

I Techniques to locate the C instruction which caused an oops
I http://kerneltrap.org/node/3648

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 620/742

http://kerneltrap.org/node/3648

Kernel Crash Analysis with kexec/kdump

I kexec system call: makes it
possible to call a new kernel,
without rebooting and going
through the BIOS / firmware.

I Idea: after a kernel panic, make
the kernel automatically execute a
new, clean kernel from a reserved
location in RAM, to perform
post-mortem analysis of the
memory of the crashed kernel.

I See Documentation/kdump/

kdump.txt in the kernel sources
for details.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 621/742

http://free-electrons.com/kerneldoc/latest/kdump/kdump.txt
http://free-electrons.com/kerneldoc/latest/kdump/kdump.txt

Tracing with SystemTap

I http://sourceware.org/systemtap/
I Infrastructure to add instrumentation to a running kernel:

trace functions, read and write variables, follow pointers,
gather statistics...

I Eliminates the need to modify the kernel sources to add one’s
own instrumentation to investigated a functional or
performance problem.

I Uses a simple scripting language.
I Several example scripts and probe points are available.
I Based on the Kprobes instrumentation infrastructure.
I See Documentation/kprobes.txt in kernel sources.
I Now supported on most popular CPUs.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 622/742

http://sourceware.org/systemtap/
http://free-electrons.com/kerneldoc/latest/kprobes.txt

SystemTap Script Example (1)

#! /usr/bin/env stap

Using statistics and maps to examine kernel memory

allocations

global kmalloc

probe kernel.function("__kmalloc") {

kmalloc[execname()] <<< $size

}

Exit after 10 seconds

probe timer.ms(10000) {

exit()

}

probe end {

foreach ([name] in kmalloc) {

printf("Allocations for %s\n", name)

printf("Count: %d allocations\n", @count(kmalloc[name]))

printf("Sum: %d Kbytes\n", @sum(kmalloc[name])/1024)

printf("Average: %d bytes\n", @avg(kmalloc[name]))

printf("Min: %d bytes\n", @min(kmalloc[name]))

printf("Max: %d bytes\n", @max(kmalloc[name]))

print("\nAllocations by size in bytes\n")

print(@hist_log(kmalloc[name]))

printf("---\n\n")

}

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 623/742

SystemTap Script Example (2)

#! /usr/bin/env stap

Logs each file read performed by each process

probe kernel.function ("vfs_read")

{

dev_nr = $file->f_dentry->d_inode->i_sb->s_dev

inode_nr = $file->f_dentry->d_inode->i_ino

printf ("%s(%d) %s 0x%x/%d\n",

execname(), pid(), probefunc(), dev_nr, inode_nr)

}

Nice tutorial on
http://sources.redhat.com/systemtap/tutorial.pdf

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 624/742

http://sources.redhat.com/systemtap/tutorial.pdf

Kernel Markers

I Capability to add static markers to kernel code.

I Almost no impact on performance, until the marker is
dynamically enabled, by inserting a probe kernel module.

I Useful to insert trace points that won’t be impacted by
changes in the Linux kernel sources.

I See marker and probe example in samples/markers in the
kernel sources.

I See http://en.wikipedia.org/wiki/Kernel_marker

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 625/742

http://en.wikipedia.org/wiki/Kernel_marker

LTTng

I http://lttng.org
I The successor of the Linux Trace Toolkit (LTT)
I Toolkit allowing to collect and analyze tracing information

from the kernel, based on kernel markers and kernel
tracepoints.

I So far, based on kernel patches, but doing its best to use
in-tree solutions, and to be merged in the future.

I Very precise timestamps, very little overhead.
I Useful documentation on

http://lttng.org/documentation

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 626/742

http://lttng.org
http://lttng.org/documentation

LTTV

I Viewer for LTTng traces
I Support for huge traces (tested with 15 GB ones)
I Can combine multiple tracefiles in a single view.
I Graphical or text interface

I See http://lttng.org/files/lttv-doc/user_guide/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 627/742

http://lttng.org/files/lttv-doc/user_guide/

Serial Drivers

Serial Drivers
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 628/742

Architecture (1)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 629/742

Architecture (2)

I To be properly integrated in a Linux system, serial ports must
be visible as TTY devices from userspace applications

I Therefore, the serial driver must be part of the kernel TTY
subsystem

I Until 2.6, serial drivers were implemented directly behind the
TTY core

I A lot of complexity was involved

I Since 2.6, a specialized TTY driver, serial_core, eases the
development of serial drivers

I See include/linux/serial_core.h for the main definitions
of the serial_core infrastructure

I The line discipline that cooks the data exchanged with the
tty driver. For normal serial ports, N_TTY is used.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 630/742

Data Structures

I A data structure representing a driver: uart_driver
I Single instance for each driver
I uart_register_driver() and uart_unregister_driver()

I A data structure representing a port: uart_port
I One instance for each port (several per driver are possible)
I uart_add_one_port() and uart_remove_one_port()

I A data structure containing the pointers to the operations:
uart_ops

I Linked from uart_port through the ops field

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 631/742

uart driver

I Usually
I Defined statically in the driver
I Registered in module_init()
I Unregistered in module_cleanup()

I Contains
I owner, usually set to THIS_MODULE
I driver_name
I dev_name, the device name prefix, usually ttyS
I major and minor

I Use TTY_MAJOR and 64 to get the normal numbers. But they
might conflict with the 8250-reserved numbers

I nr, the maximum number of ports
I cons, pointer to the console device (covered later)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 632/742

uart driver Code Example (1)

static struct uart_driver atmel_uart = {

.owner = THIS_MODULE,

.driver_name = "atmel_serial",

.dev_name = ATMEL_DEVICENAME,

.major = SERIAL_ATMEL_MAJOR,

.minor = MINOR_START,

.nr = ATMEL_MAX_UART,

.cons = ATMEL_CONSOLE_DEVICE,

};

static struct platform_driver atmel_serial_driver = {

.probe = atmel_serial_probe,

.remove = __devexit_p(atmel_serial_remove),

.suspend = atmel_serial_suspend,

.resume = atmel_serial_resume,

.driver = {

.name = "atmel_usart",

.owner = THIS_MODULE,

},

};

Example code from drivers/serial/atmel_serial.c

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 633/742

uart driver Code Example (2)

static int __init atmel_serial_init(void)

{

/* Warning: Error management removed */

uart_register_driver(&atmel_uart);

platform_driver_register(&atmel_serial_driver);

return 0;

}

static void __exit atmel_serial_exit(void)

{

platform_driver_unregister(&atmel_serial_driver);

uart_unregister_driver(&atmel_uart);

}

module_init(atmel_serial_init);

module_exit(atmel_serial_exit);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 634/742

uart port

I Can be allocated statically or dynamically

I Usually registered at probe() time and unregistered at
remove() time

I Most important fields
I iotype, type of I/O access, usually UPIO_MEM for

memory-mapped devices
I mapbase, physical address of the registers
I irq, the IRQ channel number
I membase, the virtual address of the registers
I uartclk, the clock rate
I ops, pointer to the operations
I dev, pointer to the device (platform_device or other)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 635/742

uart port Code Example (1)

static int __devinit atmel_serial_probe(struct platform_device *pdev)

{

struct atmel_uart_port *port;

port = &atmel_ports[pdev->id];

port->backup_imr = 0;

atmel_init_port(port, pdev);

uart_add_one_port(&atmel_uart, &port->uart);

platform_set_drvdata(pdev, port);

return 0;

}

static int __devexit atmel_serial_remove(struct platform_device *pdev)

{

struct uart_port *port = platform_get_drvdata(pdev);

platform_set_drvdata(pdev, NULL);

uart_remove_one_port(&atmel_uart, port);

return 0;

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 636/742

uart port Code Example (2)

static void __devinit atmel_init_port(

struct atmel_uart_port *atmel_port,

struct platform_device *pdev)

{

struct uart_port *port = &atmelt_port->uart;

struct atmel_uart_data *data = pdev->dev.platform_data;

port->iotype = UPIO_MEM;

port->flags = UPF_BOOT_AUTOCONF;

port->ops = &atmel_pops;

port->fifosize = 1;

port->line = pdev->id;

port->dev = &pdev->dev;

port->mapbase = pdev->resource[0].start;

port->irq = pdev->resource[1].start;

tasklet_init(&atmel_port->tasklet, atmel_tasklet_func,

(unsigned long)port);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 637/742

uart port Code Example (3)

if (data->regs)

/* Already mapped by setup code */

port->membase = data->regs;

else {

port->flags |= UPF_IOREMAP;

port->membase = NULL;

}

/* for console, the clock could already be configured */

if (!atmel_port->clk) {

atmel_port->clk = clk_get(&pdev->dev, "usart");

clk_enable(atmel_port->clk);

port->uartclk = clk_get_rate(atmel_port->clk);

clk_disable(atmel_port->clk);

/* only enable clock when USART is in use */

}

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 638/742

uart ops

I Important operations
I tx_empty(), tells whether the transmission FIFO is empty or

not
I set_mctrl() and get_mctrl(), allow to set and get the

modem control parameters (RTS, DTR, LOOP, etc.)
I start_tx() and stop_tx(), to start and stop the

transmission
I stop_rx(), to stop the reception
I startup() and shutdown(), called when the port is

opened/closed
I request_port() and release_port(), request/release I/O

or memory regions
I set_termios(), change port parameters

I See the detailed description in
Documentation/serial/driver

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 639/742

http://free-electrons.com/kerneldoc/latest/serial/driver

Implementing Transmission

I The start_tx() method should start transmitting characters
over the serial port

I The characters to transmit are stored in a circular buffer,
implemented by a struct uart_circ structure. It contains

I buf[], the buffer of characters
I tail, the index of the next character to transmit. After

transmit, tail must be updated using

tail = tail &(UART_XMIT_SIZE - 1)

I Utility functions on uart_circ
I uart_circ_empty(), tells whether the circular buffer is empty
I uart_circ_chars_pending(), returns the number of

characters left to transmit

I From an uart_port pointer, this structure can be reached
using port->state->xmit

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 640/742

Polled-Mode Transmission

foo_uart_putc(struct uart_port *port, unsigned char c) {

while(__raw_readl(port->membase + UART_REG1) & UART_TX_FULL)

cpu_relax();

__raw_writel(c, port->membase + UART_REG2);

}

foo_uart_start_tx(struct uart_port *port) {

struct circ_buf *xmit = &port->state->xmit;

while (!uart_circ_empty(xmit)) {

foo_uart_putc(port, xmit->buf[xmit->tail]);

xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);

port->icount.tx++;

}

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 641/742

Transmission with Interrupts (1)

foo_uart_interrupt(int irq, void *dev_id) {

[...]

if (interrupt_cause & END_OF_TRANSMISSION)

foo_uart_handle_transmit(port);

[...]

}

foo_uart_start_tx(struct uart_port *port) {

enable_interrupt_on_txrdy();

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 642/742

Transmission with Interrupts (2)

foo_uart_handle_transmit(port) {

struct circ_buf *xmit = &port->state->xmit;

if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {

disable_interrupt_on_txrdy();

return;

}

while (!uart_circ_empty(xmit)) {

if (!(__raw_readl(port->membase + UART_REG1) &

UART_TX_FULL))

break;

__raw_writel(xmit->buf[xmit->tail],

port->membase + UART_REG2);

xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);

port->icount.tx++;

}

if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)

uart_write_wakeup(port);

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 643/742

Reception

I On reception, usually in an interrupt handler, the driver must
I Increment port->icount.rx
I Call uart_handle_break() if a BRK has been received, and if

it returns TRUE, skip to the next character
I If an error occurred, increment port->icount.parity,

port->icount.frame, port->icount.overrun depending
on the error type

I Call uart_handle_sysrq_char() with the received character,
and if it returns TRUE, skip to the next character

I Call uart_insert_char() with the received character and a
status

I Status is TTY_NORMAL is everything is OK, or TTY_BREAK,
TTY_PARITY, TTY_FRAME in case of error

I Call tty_flip_buffer_push() to push data to the TTY later

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 644/742

Understanding Sysrq

I Part of the reception work is dedicated to handling Sysrq
I Sysrq are special commands that can be sent to the kernel to

make it reboot, unmount filesystems, dump the task state,
nice real-time tasks, etc.

I These commands are implemented at the lowest possible level
so that even if the system is locked, you can recover it.

I Through serial port: send a BRK character, send the character
of the Sysrq command

I See Documentation/sysrq.txt

I In the driver
I uart_handle_break() saves the current time + 5 seconds in

a variable
I uart_handle_sysrq_char() will test if the current time is

below the saved time, and if so, will trigger the execution of
the Sysrq command

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 645/742

http://free-electrons.com/kerneldoc/latest/sysrq.txt

Reception Code Sample (1)

foo_receive_chars(struct uart_port *port) {

int limit = 256;

while (limit-- > 0) {

status = __raw_readl(port->membase + REG_STATUS);

ch = __raw_readl(port->membase + REG_DATA);

flag = TTY_NORMAL;

if (status & BREAK) {

port->icount.break++;

if (uart_handle_break(port))

continue;

}

else if (status & PARITY)

port->icount.parity++;

else if (status & FRAME)

port->icount.frame++;

else if (status & OVERRUN)

port->icount.overrun++;

[...]

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 646/742

Reception Code Sample (2)

[...]

status &= port->read_status_mask;

if (status & BREAK)

flag = TTY_BREAK;

else if (status & PARITY)

flag = TTY_PARITY;

else if (status & FRAME)

flag = TTY_FRAME;

if (uart_handle_sysrq_char(port, ch))

continue;

uart_insert_char(port, status, OVERRUN, ch, flag);

}

spin_unlock(& port->lock);

tty_flip_buffer_push(port->state->port.tty);

spin_lock(& port->lock);

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 647/742

Modem Control Lines

I Set using the set_mctrl() operation
I The mctrl argument can be a mask of TIOCM_RTS (request to

send), TIOCM_DTR (Data Terminal Ready), TIOCM_OUT1,
TIOCM_OUT2, TIOCM_LOOP (enable loop mode)

I If a bit is set in mctrl, the signal must be driven active, if the
bit is cleared, the signal must be driven inactive

I Status using the get_mctrl() operation
I Must return read hardware status and return a combination of

TIOCM_CD (Carrier Detect), TIOCM_CTS (Clear to Send),
TIOCM_DSR (Data Set Ready) and TIOCM_RI (Ring Indicator)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 648/742

set mctrl() Example

foo_set_mctrl(struct uart_port *uart, u_int mctrl) {

unsigned int control = 0, mode = 0;

if (mctrl & TIOCM_RTS)

control |= ATMEL_US_RTSEN;

else

control |= ATMEL_US_RTSDIS;

if (mctrl & TIOCM_DTS)

control |= ATMEL_US_DTREN;

else

control |= ATMEL_US_DTRDIS;

__raw_writel(port->membase + REG_CTRL, control);

if (mctrl & TIOCM_LOOP)

mode |= ATMEL_US_CHMODE_LOC_LOOP;

else

mode |= ATMEL_US_CHMODE_NORMAL;

__raw_writel(port->membase + REG_MODE, mode);

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 649/742

get mctrl() example

foo_get_mctrl(struct uart_port *uart, u_int mctrl) {

unsigned int status, ret = 0;

status = __raw_readl(port->membase + REG_STATUS);

/*

* The control signals are active low.

*/

if (!(status & ATMEL_US_DCD))

ret |= TIOCM_CD;

if (!(status & ATMEL_US_CTS))

ret |= TIOCM_CTS;

if (!(status & ATMEL_US_DSR))

ret |= TIOCM_DSR;

if (!(status & ATMEL_US_RI))

ret |= TIOCM_RI;

return ret;

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 650/742

termios

I The termios functions describe a general terminal interface
that is provided to control asynchronous communication ports

I A mechanism to control from userspace serial port parameters
such as

I Speed
I Parity
I Byte size
I Stop bit
I Hardware handshake
I Etc.

I See termios(3) for details

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 651/742

set termios()

I The set_termios() operation must
I apply configuration changes according to the arguments
I update port->read_config_mask and

port->ignore_config_mask to indicate the events we are
interested in receiving

I static void set_termios(struct uart_port *port,

struct ktermios *termios, struct ktermios *old)

I port, the port, termios, the new values and old, the old
values

I Relevant ktermios structure fields are
I c_cflag with word size, stop bits, parity, reception enable,

CTS status change reporting, enable modem status change
reporting

I c_iflag with frame and parity errors reporting, break event
reporting

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 652/742

set termios() example (1)

static void atmel_set_termios(struct uart_port *port,

struct ktermios *termios, struct ktermios *old)

{

unsigned long flags;

unsigned int mode, imr, quot, baud;

mode = __raw_readl(port->membase + REG_MODE);

baud = uart_get_baud_rate(port, termios, old, 0, port->uartclk / 16);

/* Read current configuration */

quot = uart_get_divisor(port, baud);

/* Compute the mode modification for the byte size parameter */

switch (termios->c_cflag & CSIZE) {

case CS5:

mode |= ATMEL_US_CHRL_5;

break;

case CS6:

mode |= ATMEL_US_CHRL_6;

break;

[...]

default:

mode |= ATMEL_US_CHRL_8;

break;

}
Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 653/742

set termios() example (2)

/* Compute the mode modification for the stop bit */

if (termios->c_cflag & CSTOPB)

mode |= ATMEL_US_NBSTOP_2;

/* Compute the mode modification for parity */

if (termios->c_cflag & PARENB) {

/* Mark or Space parity */

if (termios->c_cflag & CMSPAR) {

if (termios->c_cflag & PARODD)

mode |= ATMEL_US_PAR_MARK;

else

mode |= ATMEL_US_PAR_SPACE;

} else if (termios->c_cflag & PARODD)

mode |= ATMEL_US_PAR_ODD;

else

mode |= ATMEL_US_PAR_EVEN;

} else

mode |= ATMEL_US_PAR_NONE;

/* Compute the mode modification for CTS reporting */

if (termios->c_cflag & CRTSCTS)

mode |= ATMEL_US_USMODE_HWHS;

else

mode |= ATMEL_US_USMODE_NORMAL;
Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 654/742

set termios() Example (3)

/* Compute the read_status_mask and ignore_status_mask

* according to the events we’re interested in. These

* values are used in the interrupt handler. */

port->read_status_mask = ATMEL_US_OVRE;

if (termios->c_iflag & INPCK)

port->read_status_mask |= (ATMEL_US_FRAME | ATMEL_US_PARE);

if (termios->c_iflag & (BRKINT | PARMRK))

port->read_status_mask |= ATMEL_US_RXBRK;

port->ignore_status_mask = 0;

if (termios->c_iflag & IGNPAR)

port->ignore_status_mask |= (ATMEL_US_FRAME | ATMEL_US_PARE);

if (termios->c_iflag & IGNBRK) {

port->ignore_status_mask |= ATMEL_US_RXBRK;

if (termios->c_iflag & IGNPAR)

port->ignore_status_mask |= ATMEL_US_OVRE;

}

/* The serial_core maintains a timeout that corresponds to the

* duration it takes to send the full transmit FIFO. This timeout has

* to be updated. */

uart_update_timeout(port, termios->c_cflag, baud);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 655/742

set termios() Example (4)

/* Finally, apply the mode and baud rate modifications. Interrupts,

* transmission and reception are disabled when the modifications

* are made. */

/* Save and disable interrupts */

imr = UART_GET_IMR(port);

UART_PUT_IDR(port, -1);

/* disable receiver and transmitter */

UART_PUT_CR(port, ATMEL_US_TXDIS | ATMEL_US_RXDIS);

/* set the parity, stop bits and data size */

UART_PUT_MR(port, mode);

/* set the baud rate */

UART_PUT_BRGR(port, quot);

UART_PUT_CR(port, ATMEL_US_RSTSTA | ATMEL_US_RSTRX);

UART_PUT_CR(port, ATMEL_US_TXEN | ATMEL_US_RXEN);

/* restore interrupts */

UART_PUT_IER(port, imr);

/* CTS flow-control and modem-status interrupts */

if (UART_ENABLE_MS(port, termios->c_cflag))

port->ops->enable_ms(port);

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 656/742

Console

I To allows early boot messages to be printed, the kernel
provides a separate but related facility: console

I This console can be enabled using the console= kernel
argument

I The driver developer must
I Implement a console_write() operation, called to print

characters on the console
I Implement a console_setup() operation, called to parse the

console= argument
I Declare a struct console structure
I Register the console using a console_initcall() function

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 657/742

Console: Registration

static struct console serial_txx9_console = {

.name = TXX9_TTY_NAME,

.write = serial_txx9_console_write,

/* Helper function from the serial_core layer */

.device = uart_console_device,

.setup = serial_txx9_console_setup,

/* Ask for the kernel messages buffered during

* boot to be printed to the console when activated */

.flags = CON_PRINTBUFFER,

.index = -1,

.data = &serial_txx9_reg,

};

static int __init serial_txx9_console_init(void)

{

register_console(&serial_txx9_console);

return 0;

}

/* This will make sure the function is called early during the boot process.

* start_kernel() calls console_init() that calls our function */

console_initcall(serial_txx9_console_init);

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 658/742

Console: Setup

static int __init serial_txx9_console_setup(struct console *co,

char *options)

{

struct uart_port *port;

struct uart_txx9_port *up;

int baud = 9600;

int bits = 8;

int parity = ’n’;

int flow = ’n’;

if (co->index >= UART_NR)

co->index = 0;

up = &serial_txx9_ports[co->index];

port = &up->port;

if (!port->ops)

return -ENODEV;

/* Function shared with the normal serial driver */

serial_txx9_initialize(&up->port);

if (options)

/* Helper function from serial_core that parses the console= string */

uart_parse_options(options, &baud, &parity, &bits, &flow);

/* Helper function from serial_core that calls the ->set_termios() */

/* operation with the proper arguments to configure the port */

return uart_set_options(port, co, baud, parity, bits, flow);

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 659/742

Console: Write

static void serial_txx9_console_putchar(struct uart_port *port, int ch)

{

struct uart_txx9_port *up = (struct uart_txx9_port *)port;

/* Busy-wait for transmitter ready and output a single character. */

wait_for_xmitr(up);

sio_out(up, TXX9_SITFIFO, ch);

}

static void serial_txx9_console_write(struct console *co,

const char *s, unsigned int count)

{

struct uart_txx9_port *up = &serial_txx9_ports[co->index];

unsigned int ier, flcr;

/* Disable interrupts */

ier = sio_in(up, TXX9_SIDICR);

sio_out(up, TXX9_SIDICR, 0);

/* Disable flow control */

flcr = sio_in(up, TXX9_SIFLCR);

if (!(up->port.flags & UPF_CONS_FLOW) && (flcr & TXX9_SIFLCR_TES))

sio_out(up, TXX9_SIFLCR, flcr & ~TXX9_SIFLCR_TES);

/* Helper function from serial_core that repeatedly calls the given putchar() */

/* callback */

uart_console_write(&up->port, s, count, serial_txx9_console_putchar);

/* Re-enable interrupts */

wait_for_xmitr(up);

sio_out(up, TXX9_SIFLCR, flcr);

sio_out(up, TXX9_SIDICR, ier);

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 660/742

Porting the Linux Kernel to an ARM Board

Porting the Linux
Kernel to an ARM
Board
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 661/742

Porting the Linux kernel

I The Linux kernel supports a lot of different CPU architectures
I Each of them is maintained by a different group of

contributors
I See the MAINTAINERS file for details

I The organization of the source code and the methods to port
the Linux kernel to a new board are therefore very
architecture-dependent

I For example, PowerPC and ARM are very different
I PowerPC relies on device trees to describe hardware details
I ARM relies on source code only, but the migration to device

tree is in progress

I This presentation is focused on the ARM architecture only

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 662/742

Architecture, CPU and Machine

I In the source tree, each architecture has its own directory
I arch/arm for the ARM architecture

I This directory contains generic ARM code
I boot, common, configs, kernel, lib, mm, nwfpe, vfp,

oprofile, tools

I And many directories for different SoC families
I mach-* directories: mach-pxa for PXA CPUs, mach-imx for

Freescale iMX CPUs, etc.
I Each of these directories contain

I Support for the SoC family (GPIO, clocks, pinmux, power
management, interrupt controller, etc.)

I Support for several boards using this SoC

I Some CPU types share some code, in directories named
plat-*

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 663/742

Source Code for Calao USB A9263

I Taking the case of the Calao USB A9263 board, which uses a
AT91SAM9263 CPU.

I arch/arm/mach-at91
I AT91 generic code

I clock.c
I leds.c
I irq.c
I pm.c

I CPU-specific code for the AT91SAM9263
I at91sam9263.c
I at91sam926x_time.c
I at91sam9263_devices.c

I Board specific code
I board-usb-a9263.c

I For the rest of this presentation, we will focus on board
support only

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 664/742

Configuration

I A configuration option must be defined for the board, in
arch/arm/mach-at91/Kconfig
config MACH_USB_A9263

bool "CALAO USB-A9263"

depends on ARCH_AT91SAM9263

help

Select this if you are using a Calao Systems USB-A9263.

<http://www.calao-systems.com>

I This option must depend on the CPU type option
corresponding to the CPU used in the board

I Here the option is ARCH_AT91SAM9263, defined in the same file

I A default configuration file for the board can optionally be
stored in arch/arm/configs/. For our board, it’s
at91sam9263_defconfig

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 665/742

Compilation

I The source files corresponding to the board support must be
associated with the configuration option of the board

obj-$(CONFIG_MACH_USB_A9263) += board-usb-a9263.o

I This is done in arch/arm/mach-at91/Makefile

obj-y := irq.o gpio.o

obj-$(CONFIG_AT91_PMC_UNIT) += clock.o

obj-y += leds.o

obj-$(CONFIG_PM) += pm.o

obj-$(CONFIG_AT91_SLOW_CLOCK) += pm_slowclock.o

I The Makefile also tells which files are compiled for every AT91
CPU

I And which files for our particular CPU, the AT91SAM9263

obj-$(CONFIG_ARCH_AT91SAM9263) += at91sam9263.o

at91sam926x_time.o at91sam9263_devices.o sam9_smc.o

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 666/742

Machine Structure

I Each board is defined by a machine structure
I The word machine is quite confusing since every mach-*

directory contains several machine definitions, one for each
board using a given CPU type

I For the Calao board, at the end of
arch/arm/mach-at91/board-usb-a926x.c

MACHINE_START(USB_A9263, "CALAO USB_A9263")

/* Maintainer: calao-systems */

.phys_io = AT91_BASE_SYS,

.io_pg_offst = (AT91_VA_BASE_SYS >> 18) & 0xfffc,

.boot_params = AT91_SDRAM_BASE + 0x100,

.timer = &at91sam926x_timer,

.map_io = ek_map_io,

.init_irq = ek_init_irq,

.init_machine = ek_board_init,

MACHINE_END

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 667/742

Machine Structure Macros

I MACHINE_START and MACHINE_END
I Macros defined in arch/arm/include/asm/mach/arch.h
I They are helpers to define a struct machine_desc structure

stored in a specific ELF section
I Several machine_desc structures can be defined in a kernel,

which means that the kernel can support several boards.
I The right structure is chosen at boot time

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 668/742

Machine Type Number

I In the ARM architecture, each board type is identified by a
machine type number

I The latest machine type numbers list can be found at
http://www.arm.linux.org.uk/developer/machines/

download.php

I A copy of it exists in the kernel tree in
arch/arm/tools/mach-types

I For the Calao board
I usb_a9263 MACH_USB_A9263 USB_A9263 1710

I At compile time, this file is processed to generate a header
file, include/asm-arm/mach-types.h

I For the Calao board
I #define MACH_TYPE_USB_A9263 1710

I And a few other macros in the same file

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 669/742

http://www.arm.linux.org.uk/developer/machines/download.php
http://www.arm.linux.org.uk/developer/machines/download.php

Machine Type Number

I The machine type number is set in the MACHINE_START()
definition

I MACHINE_START(USB_A9263, "CALAO USB_A9263")

I At run time, the machine type number of the board on which
the kernel is running is passed by the bootloader in register r1

I Very early in the boot process (arch/arm/kernel/head.S),
the kernel calls __lookup_machine_type in
arch/arm/kernel/head-common.S

I __lookup_machine_type looks at all the machine_desc
structures of the special ELF section

I If it doesn’t find the requested number, prints a message and
stops

I If found, it knows the machine descriptions and continues the
boot process

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 670/742

Early Debugging and Boot Parameters

I Early debugging
I phys_io is the physical address of the I/O space
I io_pg_offset is the offset in the page table to remap the I/O

space
I These are used when CONFIG_DEBUG_LL is enabled to provide

very early debugging messages on the serial port

I Boot parameters
I boot_params is the location where the bootloader has left the

boot parameters (the kernel command line)
I The bootloader can override this address in register r2
I See also Documentation/arm/Booting for the details of the

environment expected by the kernel when booted

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 671/742

http://free-electrons.com/kerneldoc/latest/arm/Booting

System Timer

I The timer field points to a struct sys_timer structure,
that describes the system timer

I Used to generate the periodic tick at HZ frequency to call the
scheduler periodically

I On the Calao board, the system timer is defined by the
at91sam926x_timer structure in at91sam926x_time.c

I It contains the interrupt handler called at HZ frequency
I It is integrated with the clockevents and the clocksource

infrastructures
I See include/linux/clocksource.h and

include/linux/clockchips.h for details

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 672/742

map io()

I The map_io() function points to ek_map_io(), which
I Initializes the CPU using at91sam9263_initialize()

I Map I/O space
I Register and initialize the clocks

I Configures the debug serial port and set the console to be on
this serial port

I Called at the very beginning of the C code execution
I init/main.c: start_kernel()
I arch/arm/kernel/setup.c: setup_arch()
I arch/arm/mm/mmu.c: paging_init()
I arch/arm/mm/mmu.c: devicemaps_init()
I mdesc->map_io()

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 673/742

init irq()

I init_irq() to initialize the IRQ hardware specific details
I Implemented by ek_init_irq(), which calls

at91sam9263_init_interrupts() in at91sam9263.c,
which mainly calls at91_aic_init() in irq.c

I Initialize the interrupt controller, assign the priorities
I Register the IRQ chip (irq_chip structure) to the kernel

generic IRQ infrastructure, so that the kernel knows how to
ack, mask, unmask the IRQs

I Called a little bit later than map_io()
I init/main.c: start_kernel()
I arch/arm/kernel/irq.c: init_IRQ()
I init_arch_irq() (equal to mdesc->init_irq)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 674/742

init machine()

I init_machine() completes the initialization of the board by
registering all platform devices

I Called by customize_machines() in
arch/arm/kernel/setup.c

I This function is an arch_initcall (list of functions whose
address is stored in a specific ELF section, by levels)

I At the end of kernel initialization, just before running the first
userspace program init:

I init/main.c: kernel_init()
I init/main.c: do_basic_setup()
I init/main.c: do_initcalls()
I Calls all initcalls, level by level

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 675/742

init machine() for Calao

I For the Calao board, implemented in ek_board_init()
I Registers serial ports, USB host, USB device, SPI, Ethernet,

NAND flash, 2IC, buttons and LEDs
I Uses at91_add_device_*() helpers, defined in

at91sam9263_devices.c
I These helpers call platform_device_register() to register

the different platform_device structures defined in the same
file

I For some devices, the board specific code does the registration
itself (buttons) or passes board-specific data to the registration
helper (USB host and device, NAND, Ethernet, etc.)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 676/742

Drivers

I The at91sam9263_devices.c file doesn’t implement the
drivers for the platform devices

I The drivers are implemented at different places of the kernel
tree

I For the Calao board
I USB host, driver at91_ohci,

drivers/usb/host/ohci-at91.c
I USB device, driver at91_udc,

drivers/usb/gadget/at91_udc.c
I Ethernet, driver macb, drivers/net/macb.c
I NAND, driver atmel_nand,

drivers/mtd/nand/atmel_nand.c
I I2C on GPIO, driver i2c-gpio,

drivers/i2c/busses/i2c-gpio.c
I SPI, driver atmel_spi, drivers/spi/atmel_spi.c
I Buttons, driver gpio-keys,

drivers/input/keyboard/gpio_keys.c

I All these drivers are selected by the default configuration file
Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 677/742

New Directions in the ARM Architecture

I The ARM architecture is migrating to the device tree
I The Device Tree is a data structure for describing hardware
I Instead of describing the hardware in C, a special data

structure, external to the kernel is used
I Allows to more easily port the kernel to newer platforms and to

make a single kernel image support multiple platforms

I The ARM architecture is being consolidated
I The clock API is being converted to a proper framework, with

drivers in drivers/clk
I The GPIO support is being converted as proper GPIO drivers

in drivers/gpio
I The pin muxing support is being converted as drivers in

drivers/pinctrl

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 678/742

Board Device Tree Example: tegra-harmony.dts

/dts-v1/;

/memreserve/ 0x1c000000 0x04000000;

/include/ "tegra20.dtsi"

/ {

model = "NVIDIA Tegra2 Harmony evaluation board";

compatible = "nvidia,harmony", "nvidia,tegra20";

chosen {

bootargs = "vmalloc=192M video=tegrafb console=ttyS0,115200n8";

};

memory@0 {

reg = < 0x00000000 0x40000000 >;

};

i2c@7000c000 {

clock-frequency = <400000>;

codec: wm8903@1a {

compatible = "wlf,wm8903";

reg = <0x1a>;

interrupts = < 347 >;

gpio-controller;

#gpio-cells = <2>;

/* 0x8000 = Not configured */

gpio-cfg = < 0x8000 0x8000 0 0x8000 0x8000 >;

};

};

[...]

};

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 679/742

Device Tree Usage

I The device tree source (.dts) is compiled into a device tree
blob (.dtb) using a device tree compiler (.dtc)

I The dtb is an efficient binary data structure
I The dtb is either appended to the kernel image, or better,

passed by the bootloader to the kernel

I At runtime, the kernel parses the device tree to find out
I which devices are present
I what drivers are needed
I which parameters should be used to initialize the devices

I On ARM, device tree support is only beginning

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 680/742

Porting to a New Board: Advise

I Porting Linux to a new board is easy, when Linux already
supports the evaluation kit / development board for your CPU.

I Most work has already been done and it is just a matter of
customizing devices instantiated on your boards and their
settings.

I Therefore, look for how the development board is supported,
or at least for a similar board with the same CPU.

I For example, review the (few) differences between the Calao
qil-a9260 board and Atmel’s sam9260 Evaluation Kit:

I meld board-sam9260ek.c board-qil-a9260.c

I Similarly, you will find very few differences in U-boot between
code for a board and for the corresponding evaluation board.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 681/742

Power Management

Power
Management
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 682/742

PM Building Blocks

I Several power management building blocks
I Suspend and resume
I CPUidle
I Runtime power management
I Frequency and voltage scaling
I Applications

I Independent building blocks that can be improved gradually
during development

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 683/742

Clock Framework (1)

I Generic framework to manage clocks used by devices in the
system

I Allows to reference count clock users and to shutdown the
unused clocks to save power

I Simple API described in http://free-electrons.com/
kerneldoc/latest/DocBook/kernel-api/clk.html

I clk_get() to get a reference to a clock
I clk_enable() to start the clock
I clk_disable() to stop the clock
I clk_put() to free the clock source
I clk_get_rate() to get the current rate

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 684/742

http://free-electrons.com/kerneldoc/latest/DocBook/kernel-api/clk.html
http://free-electrons.com/kerneldoc/latest/DocBook/kernel-api/clk.html

Clock Framework (2)

I The clock framework API and the clk structure are usually
implemented by each architecture (code duplication!)

I See arch/arm/mach-at91/clock.c for an example
I This is also where all clocks are defined.
I Clocks are identified by a name string specific to a given

platform

I Drivers can then use the clock API. Example from
drivers/net/macb.c:

I clk_get() called from the probe() function, to get the
definition of a clock for the current board, get its frequency,
and run clk_enable().

I clk_put() called from the remove() function to release the
reference to the clock, after calling clk_disable()

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 685/742

Clock Disable Implementation

From arch/arm/mach-at91/clock.c: (2.6.36)
static void __clk_disable(struct clk *clk)

{

BUG_ON(clk->users == 0);

if (--clk->users == 0 && clk->mode)

/* Call the hardware function switching off this clock */

clk->mode(clk, 0);

if (clk->parent)

__clk_disable(clk->parent);

}

[...]

static void pmc_sys_mode(struct clk *clk, int is_on)

{

if (is_on)

at91_sys_write(AT91_PMC_SCER, clk->pmc_mask);

else

at91_sys_write(AT91_PMC_SCDR, clk->pmc_mask);

}

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 686/742

Suspend and Resume

I Infrastructure in the kernel to support suspend and resume
I Platform hooks

I prepare(), enter(), finish(), valid() in a
platform_suspend_ops structure

I Registered using the suspend_set_ops() function
I See arch/arm/mach-at91/pm.c

I Device drivers
I suspend() and resume() hooks in the *_driver structures

(platform_driver, usb_driver, etc.)
I See drivers/net/macb.c

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 687/742

Board-specific Power Management

I Typically takes care of battery and charging management.

I Also defines presuspend and postsuspend handlers.

I Example: arch/arm/mach-pxa/spitz_pm.c

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 688/742

arch/arm/mach-cpu/sleep.S

I Assembly code implementing CPU specific suspend and
resume code.

I Note: only found on arm, just 3 other occurrences in other
architectures, with other paths.

I First scenario: only a suspend function. The code goes in
sleep state (after enabling DRAM self-refresh), and continues
with resume code.

I Second scenario: suspend and resume functions. Resume
functions called by the bootloader.

I Examples to look at:
I arch/arm/mach-omap2/sleep24xx.S (1st case)
I arch/arm/mach-pxa/sleep.S (2nd case)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 689/742

Triggering Suspend

I Whatever the power management implementation, CPU
specific suspend_ops functions are called by the
enter_state function.

I enter_state also takes care of executing the suspend and
resume functions for your devices.

I The execution of this function can be triggered from
userspace. To suspend to RAM:

I echo mem > /sys/power/state

I Can also use the s2ram program from
http://suspend.sourceforge.net/

I Read kernel/power/suspend.c

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 690/742

http://suspend.sourceforge.net/

Runtime Power Management

I According to the kernel configuration interface: Enable
functionality allowing I/O devices to be put into energy-saving
(low power) states at run time (or autosuspended) after a
specified period of inactivity and woken up in response to a
hardware-generated wake-up event or a driver’s request.

I New hooks must be added to the drivers:
runtime_suspend(), runtime_resume(), runtime_idle()

I API and details on
Documentation/power/runtime_pm.txt

I See also Kevin Hilman’s presentation at ELC Europe 2010:
http://elinux.org/images/c/cd/ELC-2010-khilman-

Runtime-PM.odp

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 691/742

http://free-electrons.com/kerneldoc/latest/power/runtime_pm.txt
http://elinux.org/images/c/cd/ELC-2010-khilman-Runtime-PM.odp
http://elinux.org/images/c/cd/ELC-2010-khilman-Runtime-PM.odp

Saving Power in the Idle Loop

I The idle loop is what you run when there’s nothing left to run
in the system.

I Implemented in all architectures in
arch/<arch>/kernel/process.c

I Example to read: look for cpu_idle in
arch/arm/kernel/process.c

I Each ARM cpu defines its own arch_idle function.

I The CPU can run power saving HLT instructions, enter NAP
mode, and even disable the timers (tickless systems).

I See also http://en.wikipedia.org/wiki/Idle_loop

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 692/742

http://en.wikipedia.org/wiki/Idle_loop

Managing Idle

I Adding support for multiple idle levels
I Modern CPUs have several sleep states offering different power

savings with associated wake up latencies
I Since 2.6.21, the dynamic tick feature allows to remove the

periodic tick to save power, and to know when the next event
is scheduled, for smarter sleeps.

I CPUidle infrastructure to change sleep states
I Platform-specific driver defining sleep states and transition

operations
I Platform-independent governors (ladder and menu)
I Available for x86/ACPI, not supported yet by all ARM cpus.

(look for cpuidle* files under arch/arm/)
I See Documentation/cpuidle/ in kernel sources.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 693/742

http://free-electrons.com/kerneldoc/latest/cpuidle/

PowerTOP

I http://www.lesswatts.org/projects/powertop/
I With dynamic ticks, allows to fix parts of kernel code and

applications that wake up the system too often.
I PowerTOP allows to track the worst offenders
I Now available on ARM cpus implementing CPUidle
I Also gives you useful hints for reducing power.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 694/742

http://www.lesswatts.org/projects/powertop/

Frequency and Voltage Scaling (1)

I Frequency and voltage scaling possible through the cpufreq
kernel infrastructure.

I Generic infrastructure: drivers/cpufreq/cpufreq.c and
include/linux/cpufreq.h

I Generic governors, responsible for deciding frequency and
voltage transitions

I performance: maximum frequency
I powersave: minimum frequency
I ondemand: measures CPU consumption to adjust frequency
I conservative: often better than ondemand. Only increases

frequency gradually when the CPU gets loaded.
I userspace: leaves the decision to a userspace daemon.

I This infrastructure can be controlled from
/sys/devices/system/cpu/cpu<n>/cpufreq/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 695/742

Frequency and Voltage Scaling (2)

I CPU support code in architecture dependent files. Example to
read: arch/arm/plat-omap/cpu-omap.c

I Must implement the operations of the cpufreq_driver
structure and register them using
cpufreq_register_driver()

I init() for initialization
I exit() for cleanup
I verify() to verify the user-chosen policy
I setpolicy() or target() to actually perform the frequency

change

I See Documentation/cpu-freq/ for useful explanations

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 696/742

http://free-electrons.com/kerneldoc/latest/cpu-freq/

PM QoS

I PM QoS is a framework developed by Intel introduced in
2.6.25

I It allows kernel code and applications to set their
requirements in terms of

I CPU DMA latency
I Network latency
I Network throughput

I According to these requirements, PM QoS allows kernel
drivers to adjust their power management

I See Documentation/power/pm_qos_interface.txt and
Mark Gross’ presentation at ELC 2008

I Still in very early deployment (only 4 drivers in 2.6.36).

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 697/742

http://free-electrons.com/kerneldoc/latest/power/pm_qos_interface.txt

Regulator Framework

I Modern embedded hardware have hardware responsible for
voltage and current regulation

I The regulator framework allows to take advantage of this
hardware to save power when parts of the system are unused

I A consumer interface for device drivers (i.e users)
I Regulator driver interface for regulator drivers
I Machine interface for board configuration
I sysfs interface for userspace

I Merged in Linux 2.6.27.

I See Documentation/power/regulator/ in kernel sources.

I See Liam Girdwood’s presentation at ELC 2008
http://free-electrons.com/blog/elc-2008-

report#girdwood

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 698/742

http://free-electrons.com/kerneldoc/latest/power/regulator/
http://free-electrons.com/blog/elc-2008-report#girdwood
http://free-electrons.com/blog/elc-2008-report#girdwood

BSP Work for a New Board

I In case you just need to create a BSP for your board, and your
CPU already has full PM support, you should just need to:

I Create clock definitions and bind your devices to them.
I Implement PM handlers (suspend, resume) in the drivers for

your board specific devices.
I Implement runtime PM handlers in your drivers.
I Implement board specific power management if needed (mainly

battery management)
I Implement regulator framework hooks for your board if needed.
I All other parts of the PM infrastructure should be already

there: suspend / resume, cpuidle, cpu frequency and voltage
scaling.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 699/742

Useful Resources

I Documentation/power/ in the Linux kernel sources.
I Will give you many useful details.

I http://lesswatts.org
I Intel effort trying to create a Linux power saving community.
I Mainly targets Intel processors.
I Lots of useful resources.

I http:
//wiki.linaro.org/WorkingGroups/PowerManagement/

I Ongoing developments on the ARM platform.

I Tips and ideas for prolonging battery life
I http://j.mp/fVdxKh

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 700/742

http://free-electrons.com/kerneldoc/latest/power/
http://lesswatts.org
http://wiki.linaro.org/WorkingGroups/PowerManagement/
http://wiki.linaro.org/WorkingGroups/PowerManagement/
http://j.mp/fVdxKh

Introduction to Git

Introduction to Git
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 701/742

What is Git?

I A version control system, like CVS, SVN, Perforce or
ClearCase

I Originally developed for the Linux kernel development, now
used by a large number of projects, including U-Boot,
GNOME, Buildroot, uClibc and many more

I Contrary to CVS or SVN, Git is a distributed version control
system

I No central repository
I Everybody has a local repository
I Local branches are possible, and very important
I Easy exchange of code between developers
I Well-suited to the collaborative development model used in

open-source projects

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 702/742

Install and Setup

I Git is available as a package in your distribution
I sudo apt-get install git

I Everything is available through the git command
I git has many commands, called using git <command>, where

<command> can be clone, checkout, branch, etc.
I Help can be found for a given command using

git help <command>

I Setup your name and e-mail address
I They will be referenced in each of your commits
I git config --global user.name ’My Name’
I git config --global user.email me@mydomain.net

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 703/742

Clone a Repository

I To start working on a project, you use Git’s clone operation.

I With CVS or SVN, you would have used the checkout
operation, to get a working copy of the project (latest version)

I With Git, you get a full copy of the repository, including the
history, which allows to perform most of the operations offline.

I Cloning Linus Torvalds’ Linux kernel repository
git clone git://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git

I git:// is a special Git protocol. Most repositories can also
be accessed using http://, but this is slower.

I After cloning, in linux/, you have the repository and a
working copy of the master branch.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 704/742

Explore the History

I git log will list all the commits. The latest commit is the
first.
commit 4371ee353c3fc41aad9458b8e8e627eb508bc9a3

Author: Florian Fainelli <florian@openwrt.org>

Date: Mon Jun 1 02:43:17 2009 -0700

MAINTAINERS: take maintainership of the cpmac Ethernet driver

This patch adds me as the maintainer of the CPMAC (AR7)

Ethernet driver.

Signed-off-by: Florian Fainelli <florian@openwrt.org>

Signed-off-by: David S. Miller <davem@davemloft.net>

I git log -p will list the commits with the corresponding diff
I The history in Git is not linear like in CVS or SVN, but it is a

graph of commits
I Makes it a little bit more complicated to understand at the

beginning
I But this is what allows the powerful features of Git

(distributed, branching, merging)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 705/742

Visualize the History: gitk

I gitk is a graphical tool that represents the history of the
current Git repository

I Can be installed from the gitk package

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 706/742

Visualize the History: gitweb

I Another great tool is the Web interface to Git. For the kernel,
it is available at http://git.kernel.org/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 707/742

http://git.kernel.org/

Update your Repository

I The repository that has been cloned at the beginning will
change over time

I Updating your local repository to reflect the changes of the
remote repository will be necessary from time to time

I git pull

I Internally, does two things
I Fetch the new changes from the remote repository

(git fetch)
I Merge them in the current branch (git merge)

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 708/742

Tags

I The list of existing tags can be found using
I git tag -l

I To check out a working copy of the repository at a given tag
I git checkout <tagname>

I To get the list of changes between a given tag and the latest
available version

I git log v2.6.30..master

I List of changes with diff on a given file between two tags
I git log -p v2.6.29..v2.6.30 MAINTAINERS

I With gitk
I gitk v2.6.30..master

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 709/742

Branches

I To start working on something, the best is to make a branch
I It is local-only, nobody except you sees the branch
I It is fast
I It allows to split your work on different topics, try something

and throw it away
I It is cheap, so even if you think you’re doing something small

and quick, do a branch

I Unlike other version control systems, Git encourages the use
of branches. Don’t hesitate to use them.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 710/742

Branches

I Create a branch
I git branch <branchname>

I Move to this branch
I git checkout <branchname>

I Both at once (create and switch to branch)
I git checkout -b <branchname>

I List of local branches
I git branch

I List of all branches, including remote branches
I git branch -a

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 711/742

Making Changes

I Edit a file with your favorite text editor
I Get the status of your working copy

I git status

I Git has a feature called the index, which allows you to stage
your commits before committing them. It allows to commit
only part of your modifications, by file or even by chunk.

I On each modified file
I git add <filename>

I Then commit. No need to be on-line or connected to commit
I Linux requires the -s option to sign your changes
I git commit -s

I If all modified files should be part of the commit
I git commit -as

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 712/742

Sharing Changes: E-mail

I The simplest way of sharing a few changes is to send patches
by e-mail

I The first step is to generate the patches
I git format-patch -n master..<yourbranch>
I Will generate one patch for each of the commits done on

<yourbranch>
I The patch files will be 0001-...., 0002-...., etc.

I The second step is to send these patches by e-mail
I git send-email --compose --

to email@domain.com 00*.patch

I Required Ubuntu package: git-email
I In a later slide, we will see how to use git config to set the

SMTP server, port, user and password.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 713/742

Sharing Changes: Your Own Repository

I If you do a lot of changes and want to ease collaboration with
others, the best is to have your own public repository

I Use a git hosting service on the Internet:
I Gitorious (https://gitorious.org/)

I Open Source server. Easiest. For public repositories.
I GitHub (https://github.com/)

I For public repositories. Have to pay for private repositories.

I Publish on your own web server
I Easy to implement.
I Just needs git software on the server and ssh access.
I Drawback: only supports http cloning (less efficient)

I Set up your own git server
I Most flexible solution.
I Today’s best solutions are gitolite

(https://github.com/sitaramc/gitolite) for the server
and cgit for the web interface
(http://hjemli.net/git/cgit/).

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 714/742

https://gitorious.org/
https://github.com/
https://github.com/sitaramc/gitolite
http://hjemli.net/git/cgit/

Sharing changes: HTTP Hosting

I Create a bare version of your repository
I cd /tmp
I git clone --bare ~/project project.git
I touch project.git/git-daemon-export-ok

I Transfer the contents of project.git to a publicly-visible
place (reachable read-only by HTTP for everybody, and
read-write by you through SSH)

I Tell people to clone
http://yourhost.com/path/to/project.git

I Push your changes using
I git push ssh://yourhost.com/path/toproject.git

srcbranch:destbranch

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 715/742

http://yourhost.com/path/to/project.git

Tracking Remote Trees

I In addition to the official Linus Torvalds tree, you might want
to use other development or experimental trees

I The OMAP tree at git://git.kernel.org/pub/scm/
linux/kernel/git/tmlind/linux-omap.git

I The stable realtime tree at git://git.kernel.org/pub/
scm/linux/kernel/git/rt/linux-stable-rt.git

I The git remote command allows to manage remote trees
I git remote add rt git://git.kernel.org/pub/scm/

linux/kernel/git/rt/linux-stable-rt.git

I Get the contents of the tree
I git fetch rt

I Switch to one of the branches
I git checkout rt/master

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 716/742

git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap.git
git://git.kernel.org/pub/scm/linux/kernel/git/tmlind/linux-omap.git
git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable-rt.git
git://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable-rt.git

Contribute to the Linux Kernel (1)

I Clone Linus Torvalds’ tree:
I git clone git://git.kernel.org/pub/scm/linux/

kernel/git/torvalds/linux.git

I Keep your tree up to date
I git pull

I Look at the master branch and check whether your issue /
change hasn’t been solved / implemented yet. Also check the
maintainer’s git tree and mailing list (see the MAINTAINERS

file).You may miss submissions that are not in mainline yet.
I If the maintainer has its own git tree, create a remote branch

tracking this tree. This is much better than creating another
clone (doesn’t duplicate common stuff):

I git remote add linux-omap git://git.kernel.org/

pub/scm/linux/kernel/git/tmlind/linux-omap.git
I git fetch linux-omap

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 717/742

Contribute to the Linux Kernel (2)

I Either create a new branch starting from the current commit
in the master branch:

I git checkout -b feature

I Or, if more appropriate, create a new branch starting from the
maintainer’s master branch:

I git checkout -b feature linux-omap/master (remote
tree / remote branch)

I In your new branch, implement your changes.

I Test your changes (must at least compile them).

I Run git add to add any new files to the index.
I Check that each file you modified is ready for submission:

I scripts/check_patch.pl --strict --file <file>

I If needed, fix indenting rule violations:
I indent -linux <file>

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 718/742

Configure git send-email

I Make sure you already have configured your name and e-mail
address (should be done before the first commit).

I git config --global user.name ’My Name’
I git config --global user.email me@mydomain.net

I Configure your SMTP settings. Example for a Google Mail
account:

I git config --

global sendemail.smtpserver smtp.googlemail.com
I git config --global sendemail.smtpserverport 587
I git config --global sendemail.smtpencryption tls
I git config --

global sendemail.smtpuser jdoe@gmail.com
I git config --global sendemail.smtppass xxx

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 719/742

Contribute to the Linux Kernel (3)

I Group your changes by sets of logical changes, corresponding
to the set of patches that you wish to submit.

I Commit and sign these groups of changes (signing required by
Linux developers).

I git commit -s
I Make sure your first description line is a useful summary and

starts with the name of the modified subsystem. This first
description line will appear in your e-mails

I The easiest way is to look at previous commit summaries on
the main file you modify

I git log --pretty=oneline <path-to-file>

I Examples subject lines ([PATCH] omitted):

Documentation: prctl/seccomp_filter

PCI: release busn when removing bus

ARM: add support for xz kernel decompression

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 720/742

Contribute to the Linux Kernel (4)

I Remove previously generated patches
I rm 00*.patch

I Have git generate patches corresponding to your branch
I If your branch is based on mainline

I git format-patch master..<your branch>

I If your branch is based on a remote branch
I git format-patch <remote>/<branch>..<your branch>

I You can run a last check on all your patches (easy)
I scripts/check_patch.pl --strict 00*.patch

I Now, send your patches to yourself
I git send-email --compose --

to me@mydomain.com 00*.patch

I If you have just one patch, or a trivial patch, you can remove
the empty line after In-Reply-To:. This way, you won’t add
a summary e-mail introducing your changes (recommended
otherwise).

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 721/742

Contribute to the Linux Kernel (5)

I Check that you received your e-mail properly, and that it looks
good.

I Now, find the maintainers for your patches
scripts/get_maintainer.pl ~/patches/00*.patch

Russell King <linux@arm.linux.org.uk> (maintainer:ARM PORT)

Nicolas Pitre <nicolas.pitre@linaro.org>

(commit_signer:1/1=100%)

linux-arm-kernel@lists.infradead.org (open list:ARM PORT)

linux-kernel@vger.kernel.org (open list)

I Now, send your patches to each of these people and lists
I git send-email --compose --to linux@arm.linux.

org.uk --to nicolas.pitre@linaro.org --to linux-

arm-kernel@lists.infradead.org --to linux-

kernel@vger.kernel.org 00*.patch

I Wait for replies about your changes, take the comments into
account, and resubmit if needed, until your changes are
eventually accepted.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 722/742

Contribute to the Linux Kernel (6)

I If you use git format-patch to produce your patches, you
will need to update your branch and may need to group your
changes in a different way (one patch per commit).

I Here’s what we recommend
I Update your master branch

I git checkout master; git pull

I Back to your branch, implement the changes taking
community feedback into account. Commit these changes.

I Still in your branch: reorganize your commits and commit
messages

I git rebase --interactive origin/master
I git rebase allows to rebase (replay) your changes starting

from the latest commits in master. In interactive mode, it also
allows you to merge, edit and even reorder commits, in an
interactive way.

I Third, generate the new patches with git format-patch.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 723/742

About Git

I We have just seen the very basic features of Git.

I A lot more interesting features are available (rebasing,
bisection, merging and more)

I References
I Git Manual

I http://schacon.github.com/git/user-manual.html

I Git Book
I http://book.git-scm.com/

I Git official website
I http://git-scm.com/

I Video: James Bottomley’s tutorial on using Git
I http://free-electrons.com/pub/video/2008/ols/

ols2008-james-bottomley-git.ogg

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 724/742

http://schacon.github.com/git/user-manual.html
http://book.git-scm.com/
http://git-scm.com/
http://free-electrons.com/pub/video/2008/ols/ols2008-james-bottomley-git.ogg
http://free-electrons.com/pub/video/2008/ols/ols2008-james-bottomley-git.ogg

Kernel Advice and Resources

Kernel Advice and
Resources
Grégory Clément, Michael Opdenacker,
Maxime Ripard, Sébastien Jan, Thomas
Petazzoni, Alexandre Belloni, Grégory
Lemercier
Free Electrons, Adeneo Embedded

c© Copyright 2004-2012, Free Electrons, Adeneo Embedded.
Creative Commons BY-SA 3.0 license.
Corrections, suggestions, contributions and translations are welcome!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 725/742

Kernel Advice and Resources

References

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 726/742

Kernel Development News

I Linux Weekly News
I http://lwn.net/
I The weekly digest off all Linux and free software information

sources
I In depth technical discussions about the kernel
I Subscribe to finance the editors ($7 / month)
I Articles available for non subscribers after 1 week.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 727/742

http://lwn.net/

Useful Reading (1)

I Essential Linux Device Drivers, April 2008
I http://free-electrons.com/

redirect/eldd-book.html
I By Sreekrishnan Venkateswaran, an

embedded IBM engineer with more than
10 years of experience

I Covers a wide range of topics not
covered by LDD: serial drivers, input
drivers, I2C, PCMCIA and Compact
Flash, PCI, USB, video drivers, audio
drivers, block drivers, network drivers,
Bluetooth, IrDA, MTD, drivers in
userspace, kernel debugging, etc.

I Probably the most wide ranging and
complete Linux device driver book I’ve
read – Alan Cox

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 728/742

http://free-electrons.com/redirect/eldd-book.html
http://free-electrons.com/redirect/eldd-book.html

Useful Reading (2)

I Writing Linux Device drivers, September
2009

I http://www.coopj.com/
I Self published by Jerry Cooperstein
I Available like any other book (Amazon

and others)
I Though not as thorough as the previous

book on specific drivers, still a good
complement on multiple aspects of
kernel and device driver development.

I Based on Linux 2.6.31
I Multiple exercises. Updated solutions for

2.6.36.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 729/742

http://www.coopj.com/

Useful Reading (3)

I Linux Device Drivers, 3rd edition, Feb
2005

I http://www.oreilly.com/catalog/

linuxdrive3/
I By Jonathan Corbet, Alessandro Rubini,

Greg Kroah-Hartman, O’Reilly
I Freely available on-line! Great

companion to the printed book for easy
electronic searches!

I http://lwn.net/Kernel/LDD3/ (1
PDF file per chapter)

I http://free-electrons.com/

community/kernel/ldd3/ (single PDF
file)

I Getting outdated but still useful for
Linux device driver writers!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 730/742

http://www.oreilly.com/catalog/linuxdrive3/
http://www.oreilly.com/catalog/linuxdrive3/
http://lwn.net/Kernel/LDD3/
http://free-electrons.com/community/kernel/ldd3/
http://free-electrons.com/community/kernel/ldd3/

Useful Reading (4)

I Linux Kernel Development, 3rd Edition,
Jun 2010

I Robert Love, Novell Press
I http://free-electrons.com/redir/

lkd3-book.html
I A very synthetic and pleasant way to

learn about kernel subsystems (beyond
the needs of device driver writers)

I The Linux Programming Interface, Oct
2010

I Michael Kerrisk, No Starch Press
I http://man7.org/tlpi/
I A gold mine about the kernel interface

and how to use it

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 731/742

http://free-electrons.com/redir/lkd3-book.html
http://free-electrons.com/redir/lkd3-book.html
http://man7.org/tlpi/

Useful Online Resources

I Kernel documentation (Documentation/ in kernel sources)
I Available on line:

http://free-electrons.com/kerneldoc/ (with HTML
documentation extracted from source code)

I Linux kernel mailing list FAQ
I http://www.tux.org/lkml/
I Complete Linux kernel FAQ
I Read this before asking a question to the mailing list

I Kernel Newbies
I http://kernelnewbies.org/
I Glossary, articles, presentations, HOWTOs, recommended

reading, useful tools for people getting familiar with Linux
kernel or driver development.

I Kernel glossary
I http://kernelnewbies.org/KernelGlossary

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 732/742

http://free-electrons.com/kerneldoc/
http://www.tux.org/lkml/
http://kernelnewbies.org/
http://kernelnewbies.org/KernelGlossary

International Conferences

I Embedded Linux Conference:
http://embeddedlinuxconference.com/

I Organized by the CE Linux Forum:
I in California (San Francisco, April)
I in Europe (October-November)
I Very interesting kernel and userspace topics for embedded

systems developers.
I Presentation slides freely available

I Linux Plumbers: http://linuxplumbersconf.org
I Conference on the low-level plumbing of Linux: kernel, audio,

power management, device management, multimedia, etc.

I linux.conf.au: http://linux.org.au/conf/
I In Australia / New Zealand
I Features a few presentations by key kernel hackers.

I Don’t miss our free conference videos on http://free-

electrons.com/community/videos/conferences/

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 733/742

http://embeddedlinuxconference.com/
http://linuxplumbersconf.org
http://linux.org.au/conf/
http://free-electrons.com/community/videos/conferences/
http://free-electrons.com/community/videos/conferences/

ARM resources

I ARM Linux project: http://www.arm.linux.org.uk/
I Developer documentation:

http://www.arm.linux.org.uk/developer/
I linux-arm-kernel mailing list:

http://lists.infradead.org/mailman/listinfo/linux-

arm-kernel
I FAQ:

http://www.arm.linux.org.uk/armlinux/mlfaq.php

I Linaro: http://linaro.org
I Many optimizations and resources for recent ARM CPUs

(toolchains, kernels, debugging utilities...).

I ARM Limited: http://www.linux-arm.com/
I Wiki with links to useful developer resources

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 734/742

http://www.arm.linux.org.uk/
http://www.arm.linux.org.uk/developer/
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel
http://lists.infradead.org/mailman/listinfo/linux-arm-kernel
http://www.arm.linux.org.uk/armlinux/mlfaq.php
http://linaro.org
http://www.linux-arm.com/

Kernel Advice and Resources

Advice

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 735/742

Solving Issues

I If you face an issue, and it doesn’t look specific to your work
but rather to the tools you are using, it is very likely that
someone else already faced it.

I Search the Internet for similar error reports.

I You have great chances of finding a solution or workaround, or
at least an explanation for your issue.

I Otherwise, reporting the issue is up to you!

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 736/742

Getting Help

I If you have a support contract, ask your vendor.
I Otherwise, don’t hesitate to share your questions and issues

I Either contact the Linux mailing list for your architecture (like
linux-arm-kernel or linuxsh-dev...).

I Or contact the mailing list for the subsystem you’re dealing
with (linux-usb-devel, linux-mtd...). Don’t ask the maintainer
directly!

I Most mailing lists come with a FAQ page. Make sure you read
it before contacting the mailing list.

I Useful IRC resources are available too (for example on
http://kernelnewbies.org).

I Refrain from contacting the Linux Kernel mailing list, unless
you’re an experienced developer and need advice.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 737/742

http://kernelnewbies.org

Reporting Linux Bugs

I First make sure you’re using the latest version

I Make sure you investigate the issue as much as you can: see
Documentation/BUG-HUNTING

I Check for previous bugs reports. Use web search engines,
accessing public mailing list archives.

I If the subsystem you report a bug on has a mailing list, use it.
Otherwise, contact the official maintainer (see the
MAINTAINERS file). Always give as many useful details as
possible.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 738/742

http://free-electrons.com/kerneldoc/latest/BUG-HUNTING

How to Become a Kernel Developer?

I Recommended resources
I See Documentation/SubmittingPatches for guidelines and

http://kernelnewbies.org/UpstreamMerge for very
helpful advice to have your changes merged upstream (by Rik
van Riel).

I Watch the Write and Submit your first Linux kernel Patch talk
by Greg. K.H:
http://www.youtube.com/watch?v=LLBrBBImJt4

I How to Participate in the Linux Community (by Jonathan
Corbet) A Guide To The Kernel Development Process
http://j.mp/tX2Ld6

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 739/742

http://free-electrons.com/kerneldoc/latest/SubmittingPatches
http://kernelnewbies.org/UpstreamMerge
http://www.youtube.com/watch?v=LLBrBBImJt4
http://j.mp/tX2Ld6

How to Submit Patches or Drivers

I Use git to prepare make your changes

I Don’t merge patches addressing different issues

I Make sure that your changes compile well, and if possible, run
well.

I Run Linux patch checks: scripts/checkpatch.pl

I Send the patches to yourself first, as an inline attachment.
This is required to let people reply to parts of your patches.
Make sure your patches still applies. See
Documentation/email-clients.txt for help configuring
e-mail clients. Best to use git send-email, which never
corrupts patches.

I Run scripts/get_maintainer.pl on your patches, to know
who you should send them to.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 740/742

http://free-electrons.com/kerneldoc/latest/email-clients.txt

Practical lab - Archive your lab directory

I Clean up files that are easy to
retrieve, remove downloads.

I Generate an archive of your lab
directory.

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 741/742

Last slide

Thank you!
And may the Source be with you

Adeneo Embedded. Consulting, Engineering, Training and Support. http://www.adeneo-embedded.com/ 742/742

	Linux Kernel Introduction
	Linux features
	Linux versioning scheme and development process

	Embedded Linux Kernel Usage
	Linux kernel sources

	Kernel Source Code
	Linux Code and Device Drivers
	Linux sources
	Kernel source management tools
	Kernel configuration
	Compiling and installing the kernel for the host system
	Cross-compiling the kernel
	Using kernel modules

	Bootloaders
	Boot Sequence
	The U-boot bootloader

	Linux Root Filesystem
	Principle and solutions
	Contents
	Device Files
	Virtual Filesystems
	Minimal filesystem

	Busybox
	Init

	Hotplugging with udev
	Cross-compiling toolchains
	C Libraries
	Definition and Components
	Obtaining a Toolchain
	Toolchain Options

	Introduction to Android
	History
	Features
	Architecture

	Changes introduced in the Android Kernel
	Anonymous Shared Memory (ashmem)
	Binder
	klogger
	Low Memory Killer
	Various Drivers and Fixes
	Network Security
	Wakelocks
	Alarm Timers

	Android Native Layer
	Bionic
	Toolbox
	Init
	Various daemons
	SurfaceFlinger and PixelFlinger
	Stagefright
	Dalvik and Zygote
	Hardware Abstraction Layer
	JNI

	Android Framework and Applications
	Service Manager and Various Services
	Inter-Process Communication, Binder and AIDLs
	Various Java Services
	Extend the framework

	Android Filesystem
	Contents

	Developing and Debugging with ADB
	Introduction
	Use of ADB
	Examples

	Android Application Development
	Basics
	Activities
	Services
	Content Providers
	Managing the Intents
	Processes and Threads
	Resources
	Data Storage
	Android Packages (apk)

	Advices and Resources
	Embedded Linux driver development
	Loadable Kernel Modules
	Memory Management
	Useful general-purpose kernel APIs
	I/O Memory and Ports
	Character drivers
	Processes and scheduling
	Sleeping
	Interrupt Management
	Concurrent Access to Resources
	Debugging and tracing

	Serial Drivers
	Porting the Linux Kernel to an ARM Board
	Power Management
	Introduction to Git
	Kernel Advice and Resources
	References
	Advice

