
Lab 1: Create your first « Hello

World » using AVD

Goals

 Create a new hello world project

 Create an android virtual device

 Deploy the application to the virtual device

Estimated time: 30 minutes

Part 1: Create a new android application project

 Creating the project

1. Open the Eclipse IDE

2. Select File -> New -> New Project. Select Android Application Project and click

next.

3. Fill in the form in the window that appeared like on the following screenshot and

click Next.

 Application name is the name that appears to users (application icon).

 Project name corresponds to the name of your project directory (visible in

Eclipse)

 Package name corresponds to the namespace for you application

 Build SDK is the platform version against which you will compile your

app.

 Minimum Required SDK is the lowest version of Android that your app

supports.

4. Now you can select an activity template from which to begin building your app.

 For this project, select BlankActivity and click Next.

5. Leave all the details for the activity in their default state and click Finish.

You should end up with the following view:

Part 2: Creating an Android Virtual Device (AVD)

 Create the AVD

1. Launch the Android Virtual Device Manager via the Eclipse menu toolbar

Window | AVD Manager.

2. In the Android Virtual Device Manager panel, click New.

3. Fill in the details for the AVD. Give it a name, a platform target, an SD card size,

and a skin (HVGA is default). Click Create AVD.

4. Select the new AVD from the Android Virtual Device Manager and click Start.

5. After the emulator boots up, unlock the emulator screen.

6. To run the app from Eclipse, open one of your project's files and click Run from

the toolbar. Eclipse installs the app on your AVD and starts it.

Lab 2: Create an alarm clock with

notification reminder

Goals

 Use Broadcast receiver

 Use Notifications

Estimated time: 40 minutes

Part 1: Create a new android application project

 Creating the project

1. Open the Eclipse IDE

2. Select File -> New -> New Project. Select Android Application Project and click

next.

3.

4. Fill in the form in the window that appeared like on the following screenshot and

click Next.

 Application name is the name that appears to users (application icon).

 Project name corresponds to the name of your project directory (visible in

Eclipse)

 Package name corresponds to the namespace for you application

 Build SDK is the platform version against which you will compile your

app.

 Minimum Required SDK is the lowest version of Android that your app

supports.

5. Now you can select an activity template from which to begin building your app.

 For this project, select BlankActivity and click Next.

Part 2: Creating an Android Virtual Device (AVD)

 Create the AVD

1. Launch the Android Virtual Device Manager via the Eclipse menu toolbar

Window | AVD Manager.

2. In the Android Virtual Device Manager panel, click New.

3. Fill in the details for the AVD. Give it a name, a platform target, an SD card size,

and a skin (HVGA is default). Click Create AVD.

4. Select the new AVD from the Android Virtual Device Manager and click Start.

5. After the emulator boots up, unlock the emulator screen.

6. To run the app from Eclipse, open one of your project's files and click Run from

the toolbar. Eclipse installs the app on your AVD and starts it.

Part 3: Create the application

The final application should look like this. Follow the steps below to reach that goal.

It contains:

 A Button to run a TimerPickerDialog

 Create graphics elements

Open the xml file present in folder res -> layout . You should see something like

this:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:text="@string/hello_world"
 tools:context=".MainActivity" />

</LinearLayout>

First, delete the TextView element and add a Button component.

<Button
 android:id="@+id/btnClock"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:text="Set the alarm clock"
 android:onClick="btnSetClicked"/>

id property is used to make a link between GUI and variables in java classes.

layout_width and layout_height corresponds of the component’s size.

Value match_parent allow to the component to use the maximum space according to the

size of its parent, here the linear layout.

Value wrap_content allow to the component to use only its content to maximum size.

 Create the TimerPickerDialog

 To display a TimerPickerDialog using DialogFragment, we need to define a

fragment class that extends DialogFragment and return a TimePickerDialog from

the fragment’s onCreateDialog method.

o Set the onCreateDialog method

 We need to use the Calendar class in order to get the current DateTime.

 final Calendar c = Calendar.getInstance();
 int hour = c.get(Calendar.HOUR_OF_DAY);
 int minute = c.get(Calendar.MINUTE);

 Then return an object TimePickerDialog using params as the current activity, the

context, current hour, current minute and an hour format.

 return new TimePickerDialog(getActivity(), this, hour, minute,
 DateFormat.is24HourFormat(getActivity()));

o Set the onTimeSet method

This method is call when the picker has been set and the button “OK” has been pressed.

Create a new intent for our BroadcastReceiver getting the context and the java class that

extends Broadcast receiver. Then create a Pending receiver using the intent.

 Intent intent = new Intent(getActivity().getBaseContext(),
 OnetimeAlarmReceiver.class);
 PendingIntent pendingIntent =
 PendingIntent.getBroadcast(getActivity().getBaseContext(), 0,
 intent, 0);

Set a new Date object using timePicker params.

 Calendar calendar = Calendar.getInstance();
 Date alarmTime = new Date(System.currentTimeMillis());
 alarmTime.setHours(hourOfDay);
 alarmTime.setMinutes(minute);
 calendar.setTimeInMillis(alarmTime.getTime());

Create an AlarmManager which provides access to the system alarm services. These

allow scheduling an application to be run at some point in the future, here sending the

broadcast using the pendingIntent.

 AlarmManager alarmManager = (AlarmManager)
 getActivity().getApplicationContext().getSystemService("alarm");
 alarmManager.set(AlarmManager.RTC_WAKEUP,
 calendar.getTimeInMillis(), pendingIntent);

 Create the Broadcast receiver

Create a new class that extends BroadcastReceiver. A new method is created, onReceive.

This method is called each time that an intent will be send to the broadcast receiver.

First add a constant holding the notification ID:

private int NOTIFICATION_ID = 444555666;

In this method, create a NotificationManger

 final NotificationManager notificationManager = (NotificationManager)
 context.getSystemService(Context.NOTIFICATION_SERVICE);

Create a Notification with params as the resource that will be set as icon, the text that

flows by in the status bar when the notification first activates, and the time to show in the

time field

 final Notification notification = new
 Notification(R.drawable.ic_launcher, "Wake up alarm",
 System.currentTimeMillis());

Create a pendingIntent in order to run the main activity when we click on the

notification.

 final PendingIntent pendingIntent = PendingIntent.getActivity(context,
 0, new Intent(context, AlarmClockActivity.class), 0);
 notification.setLatestEventInfo(context, "Alarm clock", "It's time !",
 pendingIntent);

Set the vibrator when the notification appears.

 notification.vibrate = new long[] {0,200,100,200,100,200};

Then launch it.

 notificationManager.notify(NOTIFICATION_ID, notification)

 Handle the button click event

In the main activity of your application, implement the btnSetClicked function that is

targeted by the button from the view’s xml file. First make sure your activity extends

FragmentActivity instead of Activity.

public class MainActivity extends FragmentActivity {

 …

 public void btnSetClicked(View v) {
 DialogFragment newFragment = new TimePickerFragment();
 newFragment.show(getSupportFragmentManager(), "timePicker");
 }
}

Run your application in the emulator and check if it works as expected.

Lab 3: Create a money converter

Goals

 Create a money converter

 Learn about Layout XML for handling different screen sizes

 Implement a control interface

Estimated time: 45 minutes

Part 1: Create a new android application project

 Creating the project

1. Open the Eclipse IDE

2. Select File -> New -> New Project. Select Android Application Project and

click next.

3.

4. Fill in the form in the window that appeared like on the following screenshot and

click Next.

 Application name is the name that appears to users (application icon).

 Project name corresponds to the name of your project directory (visible in

Eclipse)

 Package name corresponds to the namespace for you application

 Build SDK is the platform version against which you will compile your

app.

 Minimum Required SDK is the lowest version of Android that your app

supports.

5. Now you can select an activity template from which to begin building your app.

 For this project, select BlankActivity and click Next.

6. Leave all the details for the activity in their default state and click Finish.

Part 2: Creating an Android Virtual Device (AVD)

 Create the AVD

1. Launch the Android Virtual Device Manager via the Eclipse menu toolbar

Window | AVD Manager.

2. In the Android Virtual Device Manager panel, click New.

3. Fill in the details for the AVD. Give it a name, a platform target, an SD card size,

and a skin (HVGA is default). Click Create AVD.

4. Select the new AVD from the Android Virtual Device Manager and click Start.

5. After the emulator boots up, unlock the emulator screen.

6. To run the app from Eclipse, open one of your project's files and click Run from

the toolbar. Eclipse installs the app on your AVD and starts it.

Part 3: Create the application

The final application should look like this. Follow the steps below to create this

application.

It contains:

 An EditText containing the value to convert and the value which will be

converted.

 Two TextView and two Spinners containing currencies values.

 A Button launching the conversion

 Create graphics elements

Open the xml file present in folder res -> layout .

You should see something like this:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:text="@string/hello_world"
 tools:context=".MainActivity" />

</LinearLayout>

First, delete the TextView element and add an EditText component.

<EditText
 android:id="@+id/editTextCurrencieValue"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_margin="5dp"
 android:inputType="numberDecimal"
 android:singleLine="true"
/>

id property is used to make a link between GUI and variables in java classes.

layout_width and layout_height corresponds of the component’s size.

Value match_parent allow to the component to use the maximum space according to the

size of its parent, here the linear layout.

Value wrap_content allow to the component to use only its content to maximum size.

Do the same thing with others components: TextView, Spinner, and Button

Notes: XML language functioning as a tree you can for example add a LinearLayout

with a horizontal orientation inside another LinearLayout with a vertical orientation.

 Create the main activity

Open the main activity of your project present in folder

src-> <package_name> -> MainActivity.java

o Variables declaration

Add member variables as private with the same type as XML’s components

public class ConvertisseurActivity extends Activity {

 private EditText editTextCurrencieValue;

o Linking between activity’s members variables and GUI components

Inside the onCreate method, use method findViewById in order to link your

private variable with your GUI component using its id.

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_convertisseur);

 //Link between members variables and GUI Components
 editTextCurrencieValue = (EditText)
 findViewById(R.id.editTextCurrencieValue);

 Do the same thing for the other components.

o Create resources for your spinners

Spinners need to use a String Array containing values to show. Create a new xml

file inside folders res->values and name it currencies_array.xml. Your file should

be laid like this:

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <string-array name="currencies_array">
 <item>EUR</item>
 <item>USD</item>
 <item>GBP</item>
 <item>CAD</item>
 </string-array>
 </resources>

o Create an adapter for spinners containing the array resources

 ArrayAdapter<CharSequence> adapter =
 ArrayAdapter.createFromResource(this, R.array.currencies_array,
 android.R.layout.simple_spinner_item);

 adapter.setDropDownViewResource(android.R.layout.simple_spinner_d
 ropdow_item);

o Set the adapter to spinners

spinnerFrom.setAdapter(adapter);
spinnerTo.setAdapter(adapter);

o Set the interface onClickListener to your button

 buttonCurrencyConvert.setOnClickListener(new OnClickListener() {

 //detect a click occured on the Convert button
 public void onClick(View v) {

 }
 });

 Everything should be ok in the onCreate method.

o Create an array containing currencies values

 //Array containing currencies conversions in this order EUR,USD,CAD,AUD
 public double[][] constructDeviseArray() {
 double deviseArray [][] = { {1,1.234,0.788,1.226},
 {0.809,1,0.638,0.994},
 {1.268,1.565,1,1.556},
 {0.815,1.005,0.642,1} };

 return deviseArray;
 }

o Create interface onItemSelectedListener for spinners

 In order to detect which values are selected in spinners we need to create an

 onItemSelectedListener interface.

 The new class needs to implements this interface. Add this on the declaration line

of the class:

 implements OnItemSelectedListener

 Add these unimplemented methods.

 public void onItemSelected(AdapterView<?> arg0, View arg1, int arg2,
 long arg3) {

 public void onNothingSelected(AdapterView<?> arg0) {

 }

 In this project we will use only the first one.

o Detect which spinner changed

Inside onItemSelected we need to detect whose spinner value changed.To do

this, we get view’s parent which was used inside the interface.Then we can

retrieve the index value using the param arg2.

 if (((Spinner)arg1.getParent()).equals(spinnerFrom))
 indexSpinnerFrom = arg2;

 else if (((Spinner)arg1.getParent()).equals(spinnerTo))
 indexSpinnerTo = arg2;

o Set the onItemSelectedListener interface to spinners

In the method onCreate, add these two lines:

spinnerFrom.setOnItemSelectedListener(this);
spinnerTo.setOnItemSelectedListener(this);

Where this is a reference of the interface declared inside the main class.

o Perform the conversion

 Return inside the onClick method and convert editText’s value.

 To do this:

 get the editText’s value

 get the conversion value inside the currencies conversion array

 make calculation

 set the editText with the result value.

final double[][] deviseArray = constructDeviseArray();

buttonCurrencyConvert.setOnClickListener(new OnClickListener() {

DecimalFormat df = new DecimalFormat("###########.00");

 public void onClick(View v) {

 if(!editTextCurrencieValue.getText().toString().equals("")) {

 double valueToConvert =
 Double.parseDouble(editTextCurrencieValue.getText().toString());

 editTextCurrencieValue.setText(String.valueOf(df.format(
 valueToConvert*deviseArray[indexSpinnerFrom][indexSpinnerTo])).
 replace(',','.'));
 }
 }
}

o Build your application and try it in the emulator

